半導体業界の最近のブログ記事

インテル、デジタル技術でオリンピックを変える

(2017年6月22日 23:10)

半導体メーカートップのインテルが2024年までの8年間にわたり、IOC(国際五輪委員会)とオリンピックのパートナー契約を結んだ。日本時間62123時に記者会見を開き、日本からもウェブで会見に参加した(1)。インテルは、デジタルテクノロジーをスポーツに持ち込み、選手の能力を上げるためのトレーニング方法の改善を提案したり、野球やサッカーなどのきわどい判定を360度カメラ映像により可視化する技術を開発したりしている。

 

Fig1IntelIOC.JPG

1 日本時間62123時から始まった記者会見のビデオ中継 PC画面をカメラで撮影しただけなので画像が荒い

 

インテルは半導体メーカーであり、TVカメラや計測器を販売提供する訳では決してないが、インテルのチップを使えばこれまでできなかったことができるようになることを潜在顧客に示すことで、新しい顧客開拓に結び付ける。記者会見は、インテルのブライアン・クルザニッチCEOのプレゼンで進められたが、プレゼンの途中でIOCのトーマス・バッハ会長を紹介した。バッハ会長は、「インテルはリーディングイノベータだから、オリンピックでのパートナー契約をした」と述べ、さらに、「インテルは半導体チップを社会に提供することでより良い社会を構築するというビジョンを持っており、このビジョンはIOCの『スポーツを通じてより良い社会を構築する』というビジョンと共通する」と続けた。

 

「デジタル時代を象徴するインテルは、さまざまな革新技術を持っており、それらをオリンピックで共有することで、2020年のオリンピックを変える」とバッハ会長は意気込む。スポーツは若い人の祭典であり、若い人たちはフェイスブックやSNSなどのデジタルライフを楽しんでいる。インテルの持つ最新のテクノロジーを使い、オリンピックで選手と来場者に新しいエクスペリエンスを提供するだろうとバッハ会長は期待する。何よりもオリンピックがデジタル社会の未来を示すに違いないだろうともいう。

 

2020年の東京オリンピックでは、テクノロジーの威力を見せつけ、観客に競技の没入感(immersive)を与え、これまでのスポーツ観戦とは違う楽しみを提供することをインテルは狙っている。観客を楽しませるテクノロジーとして、クルザニッチCEOは、3次元の360度カメラをまず挙げた。これは、例えばサッカー場なら、180度をカバーするカメラシステムを8基程度設置し、1基あたりのカメラシステムには20台のカメラを搭載している。これらのカメラを全て使い、映像を立体的に合成するのだ。そのカメラシステムを東西に3基ずつ、南北に1基ずつ設置すればサッカーボールを端から端まで映像で追いかけることができる。

 

このカメラシステムが特に威力を発揮するのは、イエローカードが出るか出ないかといったきわどいファウルでの判定だ。人物もボールも360度の方向からスローモーション再生できるため、故意に選手を押したのか否か、ボールがラインを出たか否か、などの微妙な判定を人間よりも正確に行うことができる。もし、大相撲で使えば、どの勝負も取り直しはなくなり決着をつけることができる。その360度カメラシステムは野球でもファウルかホームランかの判定も簡単につく。人間の目よりも正確に360度の角度から映像を再生できるからだ。

 

インテルは、昨年の冬、報道したように(参考資料1)、ドローンを使ったクリスマスの光のイルミネーションを演出した。201511月には1度のパイロット操作(single pilot)100機のドローンを互いにぶつかることなく、光で文字や模様を描くようにプログラムした。昨年の暮れには、フロリダのウォルトディズニーワールドで、300台のドローンを飛ばした。最近では500台のドローンを1度のパイロット操作で操縦できたという。1台のドローンには大きめのLEDを搭載しており、光のいろいろな模様を演出できる。1機に40億色の組み合わせが可能なLEDを搭載し、オリンピックを機に危険な花火から操縦可能な数百台のドローンで1年中、夜空をキャンバスに使って絵や模様を描き出すことが可能になる。これによって新しいアートや芸術作品を生み出すことができるようになり、アートのビジネスにつながる可能性も出てくる。クルザニッチCEOは、かつての花火をドローンで表現できるようになる、と述べた。

 

VR(仮想現実)はすでに様々な実験が行われており、インテルはVRの具体例を示さなかったが、これまでとは違うTrue VRという言い方をしており、オリンピックではVRを使った何か応用を見せるのではないだろうか。期待は大きい。

 

Fig2IntelIOC.JPG

2 バッハIOC会長()がクルザニッチ・インテルCEO()に聖火トーチをプレゼント

 

バッハ会長は記者会見会場で、聖火ランナーのトーチをクルザニッチCEOにプレゼントした(2)。それを受けて、クルザニッチCEOは「(聖火ランナーとして)走る練習をしなきゃ」とおどけて見せていた。

 

インテルのオリンピックで見せつけるテクノロジーのスポーツへの応用はこれから始まる。このパートナーシップは夏季も冬季も行われる。冬季のスキー競技ではスタート地点からゴールまでの滑降の様子を、ドローンを使うことでこれまでとは違った映像を見せてくれるようだ。スキーヤーに対しても安全にドローンは飛べる、とCEOは強く自信をもって言い切った。今後はAI(人工知能)も絡ませて、選手のデータや勝負の行方など没入感満載のスポーツ観戦をテクノロジーがさせてくれるようになる。インテルはAIも準備できている。

2017/06/22

参考資料

1.    インテル、ディズニーとコラボでクリスマスプレゼント(2016/11/18

スマホの次はスマホ、半導体の次も半導体

(2017年5月16日 23:33)

新聞からはもはや、ポストスマホという言葉が消えてしまった。パソコン、スマートフォンの次の製品を求めようとしても、これほど爆発的な数量が売れたハイテク商品はほとんど他には見当たらないからだ。ハイテク製品がこれまでの20~30%から一桁成長になったからといって、成長が止まる訳ではないし、飽和したわけでもない。

 

Fig1CHiplog.png

1 世界半導体産業の伸びは1995年を境に2ケタ成長から1ケタへ 出典:WSTS(世界半導体市場統計)の数値を津田建二が加工

 

 例えば、図1は世界の半導体売上額を片対数グラフで表したものだ。この図は、1970年代から半導体産業が1995~6年ごろまで平均年率20%で成長してきたことを表している。四半世紀の間中、平均20%という驚異的な成長を遂げてきた。もちろんこれだけでも驚く成長だが、その後、現在に至るまで、ざっと直線を引くと平均年率は5~6%に低下する。だから、半導体産業はもう飽和している、と言われた。

  しかしこれは、片対数というハイパーリニア(直線よりももっと増加する曲線)からリニアに移行したことを知らない発言だ。図2を見てほしい。片対数ではなく、直線グラフで表すと、ここ20年くらいの半導体産業は直線的に伸び続けていることがわかる。つまり、片対数で表さなければならないほどハイパーリニア(2次曲線のようなグラフ)から直線グラフに変わってきたのである。だからと言って飽和している訳ではない。

 

Fig1Chipsales.png

2 世界半導体産業は毎年平均直線的に伸びていく 出典:WSTS(世界半導体市場統計)の数値を津田建二が加工

 

 半導体産業は、景気のサイクルの影響を受けやすい。簡単に量産しやすい性質の製造業だからである。特に、量産効果がいまだにモノを言うメモリビジネス(DRAMNANDフラッシュのようなビジネス)は、供給過剰と供給不足が景気の波と共にやってくる。いわゆる良い時もあれば悪い時もある。しかしその波は、図2からわかるように必ず増加する傾向にある。つまり、山・谷を繰り返しながら成長していく産業である。

  特に今年(2017年)は世界半導体売上額が10%を超えるという予想が複数の市場予測会社から出ており、山のサイクルに当たる。2016年と比べると2017年の半導体売上額は10%以上成長する。

  なぜ半導体産業はこれからも成長するのか。ムーアの法則は終わりつつある、と言われるから、もう飽和し成長が止まると思われがちだが、もっと冷静になって考えてみるがいい。ムーアの法則とは、市場に出ているシリコンチップ1個の上に集積されるトランジスタの数が年率2倍(最近は18~24カ月ごとに2倍)で増加する、という社会経済的原理にすぎない。電子回路はいろいろな機能を実現するために特にデジタル回路では多数のトランジスタを使うが、トランジスタを小さくすればするほど、性能は上がり消費電力は下がるため、良いことづくめだった。このため微細化してトランジスタ数を上げることが進化してきた。

  今や最小寸法は10nmのチップが市場に出始めており、次には最小寸法7nm、さらに5nmへと微細化が進む。しかし、結晶を構成するシリコン原子の直径が数分の一nm(オングストローム単位)だから微細化は原理的に限界に近づいてくる。半導体トランジスタは、そのシリコン結晶の中に3価のボロンや5価のヒ素といった原子(ドーパントと呼ぶ)をシリコン結晶に添加することで電子や正孔を湧き出させる小さな装置(デバイス)なので、さらなる微細化を続けると、二つの電極(ドレイン、ソースと呼ぶ)間に含まれるドーパントの数が十個程度しかなくなる。こうなると、トランジスタによってはドーパントの数が9個か10個かでしきい電圧が10%もバラついてしまうことになる。だから限界に近付いているという訳だ。

  半導体は、シリコンという小さな薄い結晶上に回路を構成したものだから、考えを変えて平面上ではなく立体的に形成すると考えると、小さな半導体パッケージの中に含まれるトランジスタの数にはまだ限界が来ない、とも言える。つまり例えば数cm角のパッケージ内に集積するトランジスタの数は24~36カ月ごとに倍増すると、ムーアの法則を再定義すれば、トランジスタをもっともっと数多く集積してコンピュータの性能を上げようと考えてもよい。

  実際、インテルの最新のXeonプロセッサは50~60億トランジスタを集積しており、エヌビデアの最新のグラフィックスプロセッサは200億トランジスタも集積している。立体的にチップを積み上げれば、その10倍増やすことは可能だ。さらにPoP(パッケージオンパッケージ)あるいは2.5次元的な集積化でもよい。システムの集積度を上げれば上げるほど、システムの性能は上がりエネルギーは下がり、システムコストも下がり、小型になるという方向に限界が見られない。

  AI(人工知能)は専門的な仕事を行わせるのに向いたテクノロジーだが、AGI(汎用人工知能)を用いると、専門しかできないAIから、何でもできるAIへ進化する。人間の頭脳に含まれる神経細胞(ニューロン)1000億個と言われているが、現在1000万個のニューロコンピュータはIBMが試作している。ニューロンを1000億個持つAGIコンピュータが実現するのは2045年ごろだと期待して、それをシンギュラリティ(特異点)と呼んでいる。つまり、少なくともそれまで発展の余地はまだあるということだ。

  こう考えると、成長率をパーセントで表すことはもはや適切ではなくなる。数の差で表すことで成長を実感する。昨年より数百億ドル(数兆円)増えた、減った、という評価だ。実は同じことがスマホにも言える。スマホは少し前までは50%成長、20%成長と2ケタ成長が当たり前になったものの今や1ケタ成長になった。だから成長が止まる、と考えるのは早計。パーセントで複利的に成長するのではなく、差でリニアに成長するのである(3)。新製品スマホの世界出荷台数は昨年が約14億台。今年は5%成長だとしても7000万台の新規需要が生まれるのである。これはやはり成長である。

 

Fig3Smatrtphoneshipment.png

3 スマホはまだ成長する 出典:IDC

 

 半導体もスマホもグロスが巨大になったために、従来の等比級数から等差級数へ成長が変化したと考えると現実を把握できる。スマホは今後5年くらいは年間5000万台、6000万台の規模が新規に追加されて成長していく。だからスマホの次はスマホなのである。スマホはどこでもいつでもだれでも世界中のデータをアクセスでき、しかもディスプレイとキーボードを備えた片手に持てるデバイスだから、そう簡単には代えられない。

                                                                        (2017/05/16

アップルがGPU、PMICの半導体も自前で開発へ

(2017年5月 7日 21:50)

アップルは、これまで英国のIPベンダー、イマジネーションテクノロジーズ社が開発してきたモバイル向けグラフィックス回路のIPPowerVRシリーズ)を使ってきたが、今後独自で開発していく。さらに電源用のICとも言うべきパワーマネジメントICPMIC)も従来のダイアローグセミコンダクター製チップをやめ、独自に開発する方針だ。アップルのiPhone2016年に年間23000万台以上、出荷してきており、ICの数量も極めて大きい。アップルという顧客を失うとサプライヤーは大打撃となる。サプライヤーも対処する。

  アップルが半導体開発を意外だとみる向きがあるかもしれない。しかし、アップルはiPhoneそしてiPadのアプリケーションプロセッサ(APUCPUにグラフィックスやメモリ、周辺回路などを集積したシステムLSI)を2010年ごろから自主開発してきた。特に、iPad用のAPUを開発するためイントリンジティ(Intrinsity)社を2010年に買収した。CPUコアそのものはARMCortexシリーズを用いている。ARMは実はCortex-R4の開発時にイントリンジティ社と提携し、同社の持つドミノロジックと呼ばれる回路技術をCPUコアに採り入れた。ドミノロジックはトランジスタ数の少ない回路でCPUを実現するための革新的な回路だった。これによりARMはモバイル用のCPU2GHz以上のクロックで正常に回路を動かすことができるようになった。そのイントリンジティ社をアップルが買収したのである。当然、アップルのAPUにもイントリンジティ社のドミノロジックを採用しているとみるべきだろう。

  アップルはこうしてモバイル用の強力なAPUを開発してきた。ただし、そのAPUに搭載するグラフィックス回路(GPU)はイマジネーションテクノロジーズからライセンス購入していた。イマジネーションのGPUAMDやエヌビデアのGPUとの最大の違いは消費電力が2ケタ(1/100)程度小さいことだ。このためモバイル用という低消費電力化が絶対のAPUに集積できた。モバイル用途では消費電力が多ければバッテリがすぐに減ってしまうからだ。

  アップルとサプライヤーとの関係で言えば、アップルはサプライヤーに対して、彼らの部品やIPをアップルに納めていることを公言することを許さなかった。もちろん、分解して中身を見ればおおよそのサプライヤーを知ることができるが、サプライヤー側からアップルに納入していることは言えなかった。

  今回、イマジネーションは、アップルとの契約打ち切りをプレスリリース上で発表したのは、ロンドン証券取引所に上場しているイマジネーションにとって株価が大きく左右されそうな事実が起きた場合には、公言することが求められていたからだ。これに対して、アップルは立場上何も言っていない。

  そして、イマジネーションがアップルから契約打ち切りを伝えられた時、イマジネーションの株価は一時下がったが、もう少し事実をはっきりさせておこう。アップルはGPUを独自開発することを決め、2年以内にイマジネーションのGPUを使わなくなることを宣言した。そうすると2年後にはイマジネーションの売り上げが大きく落ちるとみられがちだが、そうではない。同社PowerVR Multimedia製品&技術マーケティング担当シニアディレクタのクリス・ロングスタッフ氏(図1)によると、現在、イマジネーションの売り上げの半分がアップルに依存しているが、同社の売り上げが半減する訳ではない。

 

DSCN4811.JPG

1 同イマジネーションテクノロジーズ社PowerVR Multimedia製品&技術マーケティング担当シニアディレクタのクリス・ロングスタッフ氏

 

 なぜか。ロングスタッフ氏は、「IRビジネスはライセンス料とロイヤルティ料からなっており、ライセンス料は新規採用の時点で支払われますが、ロイヤルティ料は量産してから生産量に応じて支払われます。新規に開発する場合にはライセンス料は失われますが、ロイヤルティ料はそれを使ったチップの生産が続く限り支払われます」と筆者に述べている。つまり、2年後には新規ライセンス料は失われるが、ロイヤルティ料はiPhone 7 / 7 Plusまでの従来モデルが生産されている限り、ロイヤリティ料は発生する。もちろん、次第にロイヤルティ料は減少していくが、急にゼロになる訳ではない。

  イマジネーションはそのGPUコアPowerVRの開発をさらに進めてゆくロードマップを描き、アップル離れに対応していく。ハイエンドのシリーズ7XT、コスト効率の良いミッドレンジのシリーズ8XE、超低消費電力のウエアラブル用途のシリーズ5XEに加え、新開発のシリーズ8XE Plus、さらに今後はアーキテクチャを全面的に見直し全面的に性能を上げ、7nmという最先端プロセスにも対応できるFurian(フーリアン)アーキテクチャを採用したシリーズ8XTへと発展させていく。このFurianアーキテクチャもミッドレンジ、ローエンドへと展開していく。さらに光の陰影をうまく採り入れ写真か絵か見分けがつかないほどのグラフィックスを低消費電力で実現するレイトレーシング技術も製品ファミリに追加した。加えて、エヌビデアがGPUをマシンラーニングやディープラーニングに応用しているように、画像認識のCNN(畳み込みニューラルネットワーク)用の演算にも対応する。

  イマジネーションは、これまでの特許や知的財産権に抵触せずにモバイル用のGPUを製作することは至難の業だとみている。一方で、アップルだからできるのではないかとみる向きもある。

  PMIC開発のダイアローグはコメントを発表していないが、ダイアローグはiPhone 6の充電用の四角く白い2.5cm角程度の小型電源の心臓部となるPMICを開発してきた。ダイアローグは明言していないが、アップルの電源には同社のPMICが入っている。PMICはまた、充電器だけではなく、iPhoneiPadなどのデバイス内部にも入っており、デバイスを動かすための基本となる電源をも供給する。

  スマホやタブレットなどのモバイルデバイスは、電圧3.8~4.1Vのリチウムイオン電池1本で動作する。しかし、APU1.2Vあるいは0.9Vで動作し、液晶ディスプレイは3.1V3.7V2.5V2.2Vなどさまざまな電圧で動作する。CMOSイメージセンサでも2V13V15V9V-2.2Vなどさまざまな電圧が必要になる。3.8Vのリチウムイオン電圧でこれらの電源電圧を作り出さなければならない。だからPMICが必要となる。しかもモバイル用は消費電力を下げること、APUの性能を満たすこと、などの要求がある。

  インテルのプロセッサを見ても、PMICとセットにした使い方があり、FPGAでもPMICとセットにした回路技術が使われることが多い。性能と消費電力を共に満足させるために、安定した電源電圧が求められる。バッテリが満充電の4.1Vから3.5V程度に下がってもこれらのICには電圧が変わらない安定さが求められる。

  PMICのアナログIC技術をこれからアップルは開発していく自信があるのだろう。もちろんダイアローグも低消費電力のPMIC開発の知財を持っている。アップルは優秀な人材確保に向け、動いているとみられており、すでに80名のPMIC開発エンジニアを新規採用したといううわさもある。

                                  (2017/05/06

半導体には真の経営者が必要

(2017年4月19日 19:01)

 東芝の半導体メモリ会社への出資者を巡って揺れているが、数年前はルネサスが倒産危機にあった。だからと言って半導体が斜陽産業ではない。このことを知っているかどうかは将来に産業を左右する、とても重要なことである。将来社会のインフラと言うべき、人工知能(AI)や、IoT(モノのインターネット)、自動運転車、次世代携帯電話通信5G、さらには2045年に期待されているシンギュラリティ(AIによる人工ニューロンが人間の頭脳のニューロン1000億個に匹敵する数が形成されると期待されるブレークスルー)は、半導体チップなしでは実現できない。

  半導体チップはコンピュータやラジオ、テレビから大量に使われてきた。さらに携帯電話やスマートフォン、タブレットなどへと広がってきた。光る半導体であるLEDやレーザーも浸透した。安いフォトダイオード半導体であるソーラーやスマホに大量に入っている加速度や回転検出や磁力、温度などのセンサ半導体、カメラの眼になるイメージセンサ半導体も至るところに浸透している。さまざまな形でさまざまな機能を持ち、ハードウエアだけではなくソフトウエアまでも焼き付けられるようになった半導体は、この先さまざまなアイデアが出てきてもそれを半導体チップというメディアに焼き付けることができる。半導体チップはもはや社会のインフラになったといえそうだ。

  ところが、日本だけが半導体産業・半導体テクノロジーを正確にとらえていないようだ。AIや自動運転車、IoT5Gと言った今のメガトレンドをにらみ、半導体チップの開発を真っ先に進めているのがグーグルであり、アップルであり、IBMであり、アマゾンである。サービス産業の世界トップを行く企業こそが半導体の重要性を理解している。世界中のさまざまなハイテク企業の人たちにインタビューしても半導体チップの話をしない先端企業はない。

  彼らの認識は、自前の半導体チップで差別化を図ることが今後必須であり、これが成長し生き残る方程式なのだ。様々な業界トップの国内経営者のうち、半導体の重要性を認識している企業トップはどのくらいいるだろうか。数年前、多くの電機メーカーは半導体を切り捨て、これで赤字部門が消えた、と思ったのに、時が経つと半導体以外のコアと考えていた民生部門がだめだったことに、やっとこの頃気がついたようだ。これでは世界の先端企業と比べ何周も遅れているとの批判を受けるのはもっともである。

  ただし、半導体産業は設計と製造が分離した、ファブレス(設計)とファウンドリ(製造)に分かれているのが世界の常識。メモリだけは未だに設計と製造は分離していない。旧態依然とした大量生産のビジネスモデルだからである。東芝が四日市に巨大な工場を持つのはこの大量生産品を作っているからだ。NANDフラッシュと呼ばれるメモリを作っている東芝は、経営がひどいために、儲け頭のメモリ部門を売って東芝の赤字を補てんしよう、という状態なのだ。半導体は利益を生み出す事業部門だからこそ、売られるのである。まるで、マッチ売りの少女が最後のマッチに火をつけて最後の暖をとった物語に似ている。東芝が倒産宣言ともいうべき、会社更生法の適用を申請するという選択肢もあるが、なぜその手を使わないのだろうか。

  国内の電機経営のひどさはシャープの例でもわかるように、社長が業績不振の責任とっても会社を辞めずに会長に「出世」するような人事を行ってきた。これでは会社は良くならないのは誰が見てもわかるはず。社員のモチベーションが明らかに下がるからだ。他の大手電機の場合でも社長経験者は、相談役なり顧問なり会社に残って経営陣ににらみを効かすことが多い。社員が社長室をノックして社長に何かを提案しても、相談役の意見も聞いてごらん、と言われると誰が社長なのかわからなくなってしまう。ここでもやる気すなわちモチベーションがぐっと下がる。

  本体のまずさをわからずに半導体事業を処分してきた電機大手の経営者は、世界的には半導体が活性化していることを理解できないため、これから先の成長できる独自のエンジンを手に入れることができない。というのは独自性を持たせることのできるエンジンは、半導体かソフトウエアしかないからだ。それもソフトウエアでは高性能なエンジンになりえないことがわかれば半導体チップに焼いてハード化するしかない。すなわち差別化できる独自のエンジンは、半導体チップでしか実現できないのだ。だからグーグルやアップル、アマゾンなどのサービス業者が独自のチップを持ち始めた。

  IBMは半導体量産工場を売却したが、量産工場は差別化できるエンジンではないことを知っていたからだ。製品を量産したければ製造専門請負のファウンドリに依頼すればよい。自分で製造工場を持たなくても済むようになった。だからIBMは半導体の開発をやめない。技術競争力が弱ることを知っているからだ。AI用のニューロチップを開発し、シンギュラリティを目指す。今よりもけた違いに多くのニューロンを持つ半導体チップを開発する手を緩めない。これを開発していけば、シンギュラリティに到達する以前にAI用の高性能・超低消費電力のチップが手に入れられ、AI競争・IoT競争を制することができる。

  技術経営が叫ばれて10年近くにもなるが、半導体などのハイテク企業は技術の理解も事業の判断も素早く的確でなければならない。技術の流れを自ら理解していれば、会社をどの方向へ導くべきなのか自然とわかるのだが、残念ながら日本にはこれがわかる経営者は極めて少ない。それも現場に行かないからますますわからない。「社長室なんか要らない」と述べていた経営者(図1)の記事を昨年書いたが(参考資料1)、自分の眼で技術の流れ、メガトレンドを把握したいことが、その理由であった。

DSCN1305.JPG

図1 社長室より社員との話を優先するLabVIEWで有名なNIの社長、ドクターT

社長室に閉じこもり、ノックしてくる社員だけの意見や話を聞いていれば、誰でも「裸の王様」になってしまう。社長には、社員とその家族、出資してくれた株主、製品を使ってくれるユーザーがいれば、彼らを守り会社を持続させる責任がある。だからほかの人よりも高い報酬を得ることができる。責任とれないなら高い報酬を返納すべきであろう。

 

 

参考資料

1.    社長室なんか要らない (2016/05/06

 

東芝NANDフラッシュを買う企業

(2017年4月16日 22:33)

東芝メモリに日本勢が誰も応札しなかったが、その理由について先日「東京新聞」から電話インタビューを受けた。国内の半導体企業の理由は二つ。一つは、毎年数100億円規模の投資に耐えられないこと、もう一つは東芝のNANDフラッシュ事業を使って自社の製品ポートフォリオやビジネス戦略から相乗効果が得られないことだ。自分はインタビューする方だが、インタビューされることもしばしばある。少し説明を加えたい。

tokyoshimbun1.JPG


1
 東京新聞による電話インタビュー

 

日本の半導体メーカーは、世界でも極めて特殊だ。1970年代から1990年代にかけてずっとDRAMを生産してきた。しかも1984年のプラザ合意で円高が世界で容認された翌85年には日本のNECが世界の半導体企業の売り上げトップになり、日立製作所や東芝、三菱電機、富士通などと共に日本の半導体企業はトップテンランキングの常連となった。1990年代はじめまで日本の天下が続いた。日本企業の世界シェアは50%を超えた年もあった。1992年にインテル社にトップを譲っても2NEC3位東芝、4位モトローラ、5位日立、6TI7位富士通、8位三菱電機、9位フィリップス、10位松下電器、と日本勢はまだ強かった。しかし、1位を譲ってからは後退していく一方であった。

このため、国内では官庁と親会社を中心にみんな一緒に微細化技術を開発しよう、と経済産業省主導のさまざまなコンソーシアムを設立したが、全て失敗に終わった。日本の半導体産業は世界シェアを落とす一方で、以来一度も日本の半導体産業が浮上した年はなかった。最大の理由は、東京新聞で報じられたように、失敗したのに全てのプロジェクトを成功、と評価したからだ。このことは本音が聞ける会で複数の関係者が証言している。エンジニアなら、顧客からのクレームや、半導体チップに何か不具合が見つかると、徹底的に分析し、故障原因を突き止め、二度と不良品を出さないように対策を講じてきた。霞が関がプロジェクトを失敗と評価したなら、なぜ、どのようにして失敗に至ったのか、を研究し、対策を打てたはずだ。しかし、成功と評価したために分析せず、ひたすら失敗を繰り返してきたのである。

1980年代中ごろから1990年代にかけて日本に席巻された米国企業はどうやって回復させてきたか。何度もいろいろなところで書いてきたが、みんなでまとまって何とかしよう、というような考えはなかった。唯一、セマテックという組織を作り連邦政府の資金を投入したが、結局失敗に終わり連邦政府は手を引いた。むしろ、米国半導体企業11社が真剣に自社の強み・弱み・世界的なトレンド・脅威などを検討し、自社の道を自分で切り開いてきた。

米国企業の中で、真っ先にそのことに気が付き実行してきた企業がインテルである。1984年ごろからDRAMは日本勢が強く、しかもメモリ容量をもっともっと上げていくだけのコモディティ製品になった以上、インテルのやるべき製品ではない、と割り切った。当時、同社のCEOであった、故ロバート・ノイス氏が来日し記者会見を開き、「DRAMはマイクロプロセッサと共に当社が発明した製品だが、DRAMはもはやコモディティになったから、我々はDRAM製品から手を引く」と述べた。それ以来、インテルはマイクロプロセッサに特化し、コンピュータの世界を支配するようになり、1992年に世界のトップにのし上がった。それ以来、ずっと2017年の今でもトップを行く。

インテルだけではない。TIもナショナルセミコンダクタ(今はTI)も、サイプレスもIBMも、どのようにして半導体事業を立て直したのかをインタビューした企業は全て、自社の歩むべき道を自分で見つけたからと答えている。

また、DRAMという製品は世の中でもまずないほど、マーケティングの努力の要らない製品だ。つまり顧客に次の製品は何が欲しいのか、を聞かなくてもよかった。4倍の容量を作ればよいからだ。当時のDRAMメモリは容量が少なくてどうしようもないほどだった。今なら1チップで512Mバイトのものがあるが、日本メーカーが全盛の64Kビットや256Kビット製品はわずか8Kバイト、32Kバイトしかなかった。だからひたすら大容量化を進んだ。

今でも日本の半導体メーカーの中には、次の主力の市場を探す努力が足りないところが多い。一方で、DRAMのように巨額の設備投資が必要な分野にはいきたくない、というトラウマがある。よく「羹(あつもの)に懲りてなますを吹く」といわれるが、DRAMで懲りたからメモリはやりたくないという気持ちが強く、巨額の投資を行う体力も経営力もない。東芝のNANDフラッシュの買収でも全く同様で、東芝以外の企業は巨額の投資に踏み切れないからNANDフラッシュはやらない。

しかも大半の半導体メーカーはDRAMがなぜ失敗したのかをきちんと分析せず、安易にシステムLSIに飛びついたが、システムLSIの本質を経営者が理解していなかった。システムLSIとは、ハードウエアだけではなくソフトウエアも組み込んだチップのことだ。ここで力を入れるべきは、ソフト開発の「人」と、「アーキテクチャ」の設計者である。にもかかわらず、DRAM同様の設備投資に明け暮れ、半導体メーカーの多くは体力を失った。

NANDフラッシュというメモリもDRAMと同様、巨額の設備投資が必要な製品である。DRAMにはトラウマ、システムLSIは模索、といった状態の半導体メーカーが多かったが、産業再編によって、自社の強みを生かして企業を伸ばす経営者がようやく今現れてきたところである。もはや半導体メーカーでさえも、みんなで「仲良しクラブ」を作ろうと考えるところはもうなくなっている。

半導体各社は、例えばルネサスは、クルマとIoT、アナログチップに的を絞り、中堅の新日本無線はパワーマネジメントやMEMSマイク、SAW(表面弾性波フィルタ)など成長分野だけに特化し、回復してきた。ソニーもCMOSイメージセンサとその周辺ICに特化している。今の日本企業でメモリを手掛けているところは東芝しかなくなった。東芝のNANDフラッシュ工場がもし無料だとしても欲しくない、というのが国内半導体だろう。

ではどこへ売るか。一つはファンドや銀行系だ。もう一つはNANDフラッシュの顧客、ないしは関連する企業になろう。鴻海精密が東芝に興味を示すのは、それを購入する顧客だからである。鴻海は、東芝から購入したNANDフラッシュをiPhoneに組み込み、アップルへ納入している。ただし、極めてクセの強い経営者だけに「お坊ちゃま企業」の東芝では対応が難しいだろう。新聞ではソフトバンクの孫正義CEOと鴻海がビジネス上で関係するから、という捉え方だが、それだけで2兆円は出資できない。

もちろん海外のメモリメーカーに買ってもらうという手はあるが、今のところSKハイニックスが手を挙げているようだ。しかしSKハイニクスはかつてエルピーダの買収の時にも手を挙げて、広島の工場をさんざん見て研究し尽くしたあと、手を下したという「前科」がある。東芝にも同じことをする可能性は高い。あるいはサムスンという可能性もあるが、東芝の四日市工場を折半して使っているウェスタンデジタルが許さない。

国内メーカーならあとは、日立やNEC、富士通などストレージサーバーを手掛けている企業だろう。ただ、2兆円全ては出資しない。100億円程度の小口の出資の可能性は十分ある。NANDフラッシュ製品の安定供給を期待できるからだ。東芝は、NANDフラッシュの次の製品としてPCRAMMRAMという次世代の不揮発性メモリを開発しているが、これらを期待する国内外のコンピュータメーカーやクルマメーカーは出資先(出資額はせいぜい数%~10%どまり)の選択肢に入る。

東芝は2次応札を考えているという報道もあるが、決断を長く伸ばすことではない。また自らも資金調達に動くべきであり、待っていてはシャープ同様、評価額を下げられるようになる。東芝はあくまでも入札にこだわっているという声も聞くが、もしこれが事実なら、東芝もシャープのようになるだろう。自ら動くことが問われているのである。

2017/04/16

成長路線に乗ったルネサスDevCon

(2017年4月13日 20:02)

「一度、地獄を見たものは強い」。ルネサスエレクトロニクスの開発者会議であるDevCon(図1)を見た感想だ。半導体チップは言うまでもなくITがけん引する。特にITの今の4大トレンドである、AI(人工知能)、IoT(インターネットにつながる全てのハード)、クラウド、5G(第5世代のセルラー通信)を意識した発表が中心であり、世界の半導体産業と同じベクトルを向いている。狙う市場はもちろん海外が主戦場となる。クルマの新規獲得した2016年度(最初の9ヵ月のみ)の受注金額の70%が海外だという。

 

DSCN4377.JPG

1 ルネサスが先日開催したDevCon 基調講演開演直前の会場は満員

 

 これまでクルマのエレクトロニクスでは自動運転やADAS(先端ドライバ支援システム)では欠かせない自動認識、それに使うAI(人工知能)技術は常識になった。これをルネサスは一般工業用途にも持ってくる。それを組み込みAIとしてe-AIと呼んだ。e-AIはあらゆる組み込みシステム、つまりIoTシステムで工業用途での自動機や産業ロボットを学習させ、賢く自律的に判断させるのにAIは欠かせない。

  工業用IoTでは、全てのデータをクラウドへ上げる訳ではない。さほど大きくないデータ量をリアルタイムで処理しなければならない場合には、むしろセンサを備えたIoT端末(エッジ)が置かれたローカルで処理することが多い。もちろん、5G時代が到来すれば、クラウドでさえ、低いレイテンシ(時間遅れ)を実現できるが、今使うにはやはりローカルな処理が求められる。この処理こそ、e-AIが能力を発揮する。

  IoTシステムの中でデータ解析をするツールとしてAIは今や常識になってきた。工業用IoTデバイスをプラント内の配管や装置の近くに設置し、IoTからのデータを集めそれをAIで解析することで機械の予防保全に利用したり、機械のスループットを上げたりする。生産性を上げればIndustry 4.0となり、機械のデータをARなどデジタルで見られればデジタルツインになる。もはやIoTAIはセットになってきたともいえそうだ。

  ルネサスが意図するe-AIでは、学習はクラウドで行い、推論をエッジで行う。ルネサスはインテルとは違い、演算リッチのハイエンドプロセッサを持っていない。ハイエンドマイコンやSoCは得意であり、これらは現場(エッジ)で使うのに向いている。だからこそ、ルネサスの得意な半導体チップを推論用に使い、高度の演算が必要な学習はクラウドで対応する。クラウド上で使ったCaffeTensorflowソフトウエア言語で書いた学習データをマイコンに焼き付けられるように変換するツールとその検証ツールを用意している。さらに、別のところから学習させたデータも取り込めるようにインポートツールも用意した。

  日本の半導体企業の中でAIチップを開発しているところはまだ少なく、インテルやエヌビディア、IBMなどAIを積極的に進めている半導体企業とは違っていた。今回、ルネサスは世界の勝ち組と同様のメガトレンドをうまくとらえており、AIでの成長を見込んでいる。しかもルネサスならではのAIへのアプローチを採った。

FigReneNewOrders.png

 

2 クルマ分野の新規商談金額の推移 すぐに売り上げに反映されないが4~5年後には間違いなく売り上げは増加しそうだ 出典:ルネサスエレクトロニクス

 

 また、クルマ用のマイコンR-Car RH850の商談は順調に伸びており、2016年度はまだ9カ月目の段階で2015年度の新規商談の金額を超え、6500億円を突破した(図2)。今や絶好調と言えるレベルにまで上がってきた。クルマ用半導体は開発完了してから実際のクルマに搭載されるまで5年かかるため売り上げに反映されるにはまだ時間はかかるが、ルネサスの未来は明るくなった。

  かつてルネサスは、リーマンショック後の売上の落ち込み・大幅赤字と、自己資本比率が10%を切る寸前まで落ち込んだ。まさに地獄だった。経営陣の刷新を図り、以来、再建の道を歩んできた。四半期ベースでは10数期連続営業黒字が続いている。

  かつて地獄を見たルネサスは、着々と回復するどころか、成長路線に飛び乗った。社員の顔色も良い。DevConで話を聞いたルネサスの社員たちは、自分の仕事を積極的に説明してくれた。とても全てを紹介できないが、SiCよりもコストが1ケタ低いシリコンのIGBTパワートランジスタを使いながら、電力効率を高め弁当箱大のインバータを実現したり、わずか5mm角程度のICパッケージに入ったパワーMOSトランジスタで30A3相モータを駆動したりする展示もあった。喜々として説明してくれる態度からはルネサスの未来が見えた。

  日立製作所、NEC、三菱電機という親会社からほぼ完全に独立し、自らの責任で自らの道を歩むルネサスに変わった。産業革新機構というファンドの援助があり、外部から経営の専門家が会社を率いたやり方こそ、グローバル企業のやり方でもある。半導体に限らず、日本のIT/電機企業の手本になる日も近い。さて、「優秀なお坊ちゃん企業」東芝はどうするつもりなのか。

                             (2017/04/13

絶体絶命の東芝、半導体はチャンス

(2017年2月14日 22:43)

 東芝は14日の12時に予定していた20184~12月期の連結決算の公表を1カ月先に延ばすことを発表した。東芝は大丈夫か?2006年に買収した米ウェスチングハウス社の子会社にあたる原子力サービス会社を買収した金額と実際の企業価値との間に大きなかい離があり、その差を示す「のれん代」を特別損失計上しなくてはならない。その金額は常識から大きく外れ、東芝は50億ドルと見積もっていたが、最大7000億円の規模ともいわれている。

  要は、いまだに損失がいくらになるのか、つかめていないのである。これほど巨額の損失を買収した米国の子会社で出したことから大変なことになり、本体の屋台骨が揺らいでいるのである。今回の延長は、米原子力サービス子会社の買収を巡って「内部統制の不備を示唆する内部通報があった」としてWestinghouse経営陣に対して徹底した調査が必要と判断したためとしている。

  ウェスチングハウスの買収では、競争相手であった三菱電機からもぎ取ったモノだったのに、東芝経営陣はきちんとしたデューデリジェンスを行っていたとは素人目にも言えないほど、ずさんな買い物であり、ずさんな経営を行ってきたのである。その金額たるや、常識外れの巨額であるということは、やはり旧経営陣の責任は免れまい。

  粉飾決算ともいえる不正会計事件の時には「チャレンジ」と称して利益を上げるように指示しただけで、具体的な戦略も戦術もなかったと聞く。この時の責任もまだ問われていない。そもそも東芝の社員は、昔からのんきな人間が多い。がつがつと競争相手をなぎ倒して何が何でも取りに行くというタイプでは決してない。ある意味「お坊ちゃん」の多い社風だった。何事も対応は遅い、何回か言わないと動いてくれない、でも良い人が多い。こういう社風に慣れた社員に突然チャレンジを言っても、何をどうやってこれまでに生み出したことのない追加利益を生み出せばよいのか、多くの社員はわからない。経営陣は、にもかかわらず無理にでも利益を出せ、と言うだけだったため、数字を変えてしまう、いわゆる粉飾に手を染めてしまった。


半導体は絶好調

  今、東芝の半導体、特にNANDフラッシュ部門は絶好調である。価格は下がらない上に、新しい3D技術は歩留まりが上がらず、需要を満たす量を生産できないため、ますます値上がり傾向は続く。NANDフラッシュのトップシェアを握るサムスンもいまだに安定生産ができていない。3D NAND技術は難しいゆえに数量が間に合わないため、価格は値上がり気味に推移している。携帯電話からスマートフォンに移り、需要はあっという間に伸び、さらに金融市場では遅いHDD(ハードディスクドライブ)からNANDフラッシュを使う固体ディスクSSDへとシフトしている。この傾向は当分続く。だからNANDフラッシュの未来は明るいのである。

Toshiba.png

  東芝の利益の源泉である半導体、NANDフラッシュ事業を分社化して、一部を売りその販売益で原子力の穴埋めをしようと、現経営陣はもくろんだ。しかし、儲けているNANDフラッシュをもってしても巨額の赤字を埋めることはできなくなっている。当初は20%程度の株を売ろうとしていたが、半分を売る、といううわさも出ている。


メモリ部門は完全売却すべし

  それならいっそ、全部売ってしまえばよいではないか。東芝の半導体メモリ事業は、1兆数千億円の価値が見込まれているようだ。東芝から完全に切り離せば、東芝本体は債務超過にはならずに済む。半導体部門も、親会社もウィン・ウィンの関係になる。

  日本の電機メーカーの悪い所は、半導体部門を切り離しても完全独立させずに、子会社として支配してきたことによる。日立製作所、NEC、富士通、東芝、三菱電機、パナソニックなど全て子会社として支配してきた。これが間違いだったと、遅ればせながらでも気づいてほしい。

  日本の半導体産業をつぶしたのは、実は電機の親会社である。人事権を盾にふるい、子会社の経営陣を支配し、子会社の経営陣はいつでも親会社に戻れるといった甘えを育成してきた。このため子会社の経営者は常に親会社の顔色を窺ってきた。これでは世界と戦えない。親会社が支配している以上、自主独立、自主戦略は立てられない。これは良い悪いではなく、どの会社も親会社、子会社の関係は少なからず、こうなっている。だからこそ、自主独立にして、しがらみを断ち切なければ世界の半導体メーカーとは伍していくことはできない。


成功者は完全独立

  世界の半導体メーカーは違う。もとより半導体専業メーカーが多い。日本と同様、電機の親会社が半導体部門を育成し、途中で分社化したケースもあるが、日本と大きく違うのは子会社にしなかったことだ。

  オランダのフィリップス社から分社化したNXPセミコンダクターや、半導体製造装置業界トップになったASMLLED照明のトップメーカーOSRAMなど、フィリップスの株式はゼロである。完全独立だ。親会社の干渉は全くない。シーメンスから独立した半導体メーカーのインフィニオンテクノロジーズも親会社の株はゼロ。かつてモトローラから独立したオン・セミコンダクターもゼロ、ヒューレットパッカードから独立したアバゴ社は今、ブロードコムと名乗っているが、やはりゼロ。すなわち世界の半導体メーカーは、親会社からの資本をゼロにして完全独立によって自社の進むべき道や戦略を責任もって自分で立て世界と競争している。

  半導体部門を完全独立の企業にすべきことはすでに7年前から叫んできた(参考資料1)。日本ではロームだけが半導体専業のメーカーであるが、他はほとんど全部、システム部門から分社化したところは全て、子会社を強いてきた。世界と日本の違いをもういい加減に自覚してはどうか。いつまでたっても半導体も親会社の電機もダメなままでいる(増収・増益ができていない)状況から抜けだそうではないか。東芝のNANDフラッシュ会社や半導体会社が自主独立を進め、自分らで責任もって戦略を立て遂行すれば、必ず世界と同じ舞台で競争できる。メモリ以外の半導体部門にとっても今はそのチャンスでもある。

 

参考資料

1.    津田建二「知らなきゃヤバイ! 半導体、この成長産業を手放すな」、日刊工業新聞社刊、20104

「デジタル化」の本質は、アナログ技術

(2017年1月26日 19:31)

デジタル社会、経済のデジタル化、デジタル取引など世の中で使われている「デジタル」という言葉の本質は、実はアナログ技術である。米国のアナログ・デバイセズ社のフェローであるRobert Adams氏の講演(図1)を昨日聴いて、デジタル化という言葉の中身はアナログ技術だと思うようになった。

 

image4.jpg

1 ADIのフェローであるボブ・アダムズ氏 講演会場にて

これまで、テクノロジーとしてのデジタルとアナログという観点から、デジタル社会とかオフィスや工場のデジタル化などの言葉に違和感をずっと抱いていた。というのは、テクノロジーを動かす基本的な要素がアナログ回路技術であり半導体チップであるが、その半導体チップはデジタルよりもアナログの方が数量は伸び続けてきているからだ(図2)。

FigAnalogchips.png

 

2 アナログ半導体の方が数量は、増え続けている 赤色がアナログ半導体、青色がデジタル半導体 出典:IC Insights

E-コマースやインターネット、通信、ウェブビジネス、最近ではIoTや人工知能(AI)、VR/AR(仮想現実/拡張現実)などさまざまなエレクトロニクス技術が身近になってきたが、これらをエレクトロニクスという言葉で言わなくなった。それに代わる言葉が「デジタル」なのである。だから、世の中で使われている「デジタル」という言葉はITや最新コンピュータ、インターネット、モバイルなどを表す「代名詞」であり、「デジタル化の波」という表現とアナログ半導体の方が伸び続けている、という事実にガテンがいく。

つまり「デジタル」という言葉の中に潜むテクノロジーには、純粋なデジタル技術があることは言うまでもないが、それに加えてアナログ技術も、アルゴリズムを表現するソフトウエア技術も、エレクトロニクス技術で使っている全ての技術を含んでいるのである。

Adams氏は、かつてはアナログ技術の塊だったオーディオ技術に係わり、最近では、オーディオの音をさらに人間の耳に近づけるためのDSP(デジタル信号処理プロセッサ)やノイズキャンセルのアルゴリズムをはじめとするソフトウエア技術にも係わっている。高周波のワイヤレス回路ではSDR(ソフトウエア無線)技術を実現する超広帯域アンプとプログラム可能なフィルタ回路にも係わっている。つまりテクノロジーの観点から言えば、デジタル技術もアナログ技術もともに使ってより良い製品を実現しようとしている。

テクノロジー的に言えば、デジタル技術でさえ、アナログ技術を知らなければ高速のプロセッサやメモリなどデジタルICの設計はできない。10だけの世界は、低周波だとオンとオフのパルスに見えるが、高速に動作させるとオンとオフの境界がなくなってくるからだ。オンとオフの境界は連続的でありアナログ的になる。だから、高速デジタル設計にさえアナログ技術が欠かせないのだ。

例えばインテル社のように純粋にデジタルのマイクロプロセッサを設計してきた半導体メーカーでさえ、アナログ技術者がどっさりいる。しかも、高速のアナログ回路やワイヤレス技術に欠かせない高周波回路のエンジニアも少なくない。もちろん、インテル社だけでない。いまは、性能よりもユーザーエクスペリエンス(UX)の時代だ、とAMDのエンジニアは述べている。人間とのインターフェースはアナログ技術で表現しなければならないため、UX時代にはますますアナログ技術が必要となる。

ただし誤解を避けるために補足するが、アナログ技術だけで回路を組む時代はとっくに終わった。アナログ技術とデジタル技術の両方を使い、さらにソフトウエアも必要とされる。この流れは、「コンピュータ技術(CPU+メモリ+インターフェース+周辺回路))がコンピュータだけではなくあらゆる電子製品に入ってきたことと深く関係している。コンピュータではない電気釜や洗濯機、エアコン、スマートフォン、携帯電話などにも「コンピュータ技術」が使われるようになってきているのである。

「コンピュータ技術」は、ソフトウエアさえ変えればなんにでも使える便利な技術である。ハードウエアを変えなくてもソフトウエアの変更だけで機能を変えたり追加できたりする。スマホは、アプリをダウンロードさえすれば、ゲームにもラジオにも変貌する。これが「コンピュータ技術」である。これにアナログ回路はさらに機能をしっかりと追加し、もっと便利に使えるようにするテクノロジーだ。だからこそ、コンピュータ時代にアナログが重要になる。

 スマホなどの製品を使うユーザーにとって楽しく感じさせることのできる製品がウケる時代だ。その楽しさを実現するのに必要な技術は人間の気持ちを代弁する表現法であることが望ましい。その技術こそ、やはりアナログ技術に他ならない。

                                   (2017/01/26

ARMシンポで見えたソフトバンク買収の意図

(2016年12月 8日 00:02)

ソフトバンクによるARMの買収は、実はIoTデバイス(センサデバイス、センサ端末、IoT端末ともいう)への応用を狙っただけではなかった。狙いは、クラウドにおけるベアメタル(物理サーバ)、スーパーコンピュータなどの応用も含めた「IoTシステム」である。コンピューティングのすべてのレイヤーでARMプロセッサを集積したチップを超並列演算させる応用まで含む壮大な計画である。

DSCN3265.JPG

 

ARMが主催した「ARM Tech Symposia 2016」が先週末、東京・品川で開催された。基調講演に登場した、ソフトバンクグループ代表取締役副社長でありソフトバンク代表取締役兼CEOでもある宮内謙氏、ARM社の上級副社長兼CCOChief Commercial Officer)のレーン・ハース氏、同じくARMのシステム&ソフトウエアグループのジェネラルマネジャーのモニカ・ビダルフ氏の3名の基調講演を聞いて、ソフトバンクがARMを買った理由がわかった。

 

IoTシステムとは、IoTデバイスからゲートウェイや基地局を通してクラウドにデータを上げデータ収集・蓄積・解析を行い、整理されたデータを意味のある情報に変換して、IoT端末を取り付けた顧客の装置や店舗などにフィードバックし、予知的なフィードフォワード制御を自律的に行うシステムを指す(参考資料1、2)。これらのシステム全体にARMプロセッサコアを集積した半導体チップをサーバのメーカーやユーザーに提供する。だからこそ、システム全体に含まれるハードウエアには、端末のIoTデバイスは言うまでもなく、エッジコンピューティングの役割を担うゲートウェイ装置、データサーバ、ストレージサーバ、情報を見える化して受け取るスマートフォンやタブレット、などがある。これらすべての応用に向けARMコアを半導体SoCチップメーカーに提供しようとするものである。

 

ここまで広いシステムであれば、ARMコアの行方はこれまでの携帯・モバイルデバイスを大きく超えてしまうはずだ。元々IoTデバイスではマイコンを使うが、ここにはCortex-Mシリーズが十分な数量使われる。今回、基調講演で明らかにしたことは、クラウド用の物理サーバ(仮想サーバではない)用のARMコア、富士通のスパコン「京」の次機種に使うARMコアである。

 

ソフトバンクはARM買収を決めた直後に、ベアメタルクラウドを特長とするPacket社に8940万ドル(1億円強)の出資を決めた。Packet社は2014年に創業したばかりのベンチャーであり、ソフトバンクはすでに取締役を送り込んでいる。このクラウドサーバの頭脳となるSoC半導体のCPUARMv8アーキテクチャを採用した。この結果、消費電力は1/10に減り、サーバを並べたラック当たりのCPUコアは7300個にもなり、ラックの容量は従来の3倍にも増えるという。このARMアーキテクチャのサーバをPacket社が導入し、クラウドサービスを始めるのである。サービス業者といえども、ハードウエアをきっちりと押さえておく。

 

富士通のスパコン「京」の次機種には従来のSPARCチップではなく、ARMアーキテクチャを使うようだ。東北大学が開発した津波シミュレーションソフト「TSUNAMI」の研究を通じて、ARMの命令セットアーキテクチャをスーパーコンピュータ用に拡張する研究を理化学研究所・富士通は行っていた。SVE(スケーラブルなベクトル拡張)を備えたARMv8-Aアーキテクチャを使って TSUNAMIシミュレーションソフトで性能を評価すると、コンピュータ能力は50倍高まり、効率は15倍上がることがわかったと言う。SVEはベクトル長を最大2048ビットまで拡張できる機能だ。

 

総じて、ARMアーキテクチャは、高性能なデータ解析や、マシンラーニングのような人工知能、ネットワーク技術、大規模計算などにこれから使っていく。これらの応用はまさにインテルが得意としていたところ。ARMは低消費電力を得意としており、それでいながらCPUコアを性能向上へと進化させてきた。

 

こうなるとARMの次の戦略は、エッジコンピューティングをはじめとするミッドレンジのコンピュータへと広げていくことになる。IoTデバイスだけでは3兆円もの買収金額にはとても見合わないと思っていたが、今後のシステム拡張に向けた戦略であることが明白になった。これまでARMは低消費電力プロセッサに注力し、Intelは高性能プロセッサにフォーカスし、それぞれすみ分けてきた。しかし今回ARMIoTを通じて、この先インテルとまともにぶつかり合うことを宣言したことに等しい。勝負の行方はどうなるだろうか。


参考資料

1.    IoT時代はデータ価値の理解が最重要

2.    IoTを正しく認識しよう

                                                                   (2016/12/07

クアルコムはNXPをどうするのか?

(2016年10月30日 23:50)

スマートフォンの頭脳となるアプリケーションプロセッサと通信モデムチップを提供してきたクアルコム社がオランダの総合半導体メーカーNXPセミコンダクター社を買収することで両社合意に達した。今月初めに、「クアルコムのNXP買収はあり得ない」という記事を書いたが、筆者の予測は見事に外れ、うわさ通りに進んだ。しかし、これはクアルコムにとって本当に良い買い物なのか、疑問は残る。

 

日本の新聞やマスメディアは、クルマ用の半導体欲しさにNXPを買ったと見ている。確かにNXPはクルマ用半導体では世界トップメーカーになった。センサ、マイコン、送受信機などIoTシステムやクルマに強いNXP、クルマ用プロセッサに強いフリースケールとの合併によってNXPのクルマ用半導体は強くなった。しかし、クルマ用の半導体はたしかにこれから成長が期待されているが、スマホビジネスから見ると残念ながら数量はそれほど多くはない。

 

DSCN2525.JPG

海外の識者の見方はやはり、大きな問題として企業文化の違いを指摘する(例えば、EPCCEOで電子産業の論客でもあるAlex Lidow氏へのインタビューニュース)。クアルコムは、研究開発に特化するファブレス企業であり、研究開発費は売り上げの20%にも及ぶ。NXPは設計も製造も持つIDM(垂直統合型の半導体メーカー)である。このためサプライチェーンは全く異なる。ファウンドリとの付き合い方や設計工程の関わり方、スマホという限られた製品に向けたビジネス特有の文化を変えなければならなくなる。もう一つの大きな企業文化の違いは、クアルコムは大量生産少量カスタマのビジネスを遂行してきたこと。NXPは顧客の数が多いビジネスを行ってきた。

 

ファブレス企業は工場の生産量を考えないビジネスを行っているが、IDMは顧客に対して常に、数量はどのくらい出るのか、によって顧客と交渉する。わずかしか使わないICなら作らない。顧客が来ても「帰ってくれ」というビジネスになる。注文を取る時は、常に工場のキャパシティ(生産能力)を見ながらではないと受けない。パナソニックと富士通セミコンダクターのSoC部門が統合したソシオネクスト社のあるエンジニアは「ファブレスになってよかったことは、生産量がある程度少なくても顧客を獲得できることでした」と述べている。IDMだった組織では、わずか月産数千個なら他にいってくれ、と断っている。

 

クアルコムはファブレスでありながら、数量が多いビジネスを手掛けてきた。顧客はスマホメーカーだったから、彼らに向けたアプリケーションプロセッサやモデムを提供してきた。組み込みシステムと違い新規顧客もスマホメーカーだった。このため、一般市場向けにも販売していく製品が必要だった。その一つが自動車向けかもしれない。

 

NXPのような製造部門を持っていると工場のメインテナンスや稼働のために人員を確保しなければならず、投資も工場に向けなければならない。つまり売り上げの20%を超えるこれまでの研究開発投資はあきらめなければならない。

 

かつて、インフィニオンテクノロジーズがDRAM専用のキモンダを別会社にスピンオフしたが、その目的は経営者が投資規模の全く違うビジネスを判断できないからだった。DRAMやメモリは量産工場の微細化とキャパシティを上げることに投資し、SoCソフトウエアや開発ツール、設計アーキテクチャなど人材への投資が中心となり、さらに設計だけではなく工場への投資も必要となる。メモリほどではないが工場の稼働や保守などにも投資しなければならない。クアルコムがNXPを合併させると、量産投資、研究開発投資、設計への投資、など投資負担が重くなることを覚悟しなければならない。

 

クアルコムとしてはモバイルネットワーク特化型ビジネスから、組み込み型へと広げていることは確かだ。先日も都内で記者会見を開き、製品のロジスティクスについてこれまでとは大きく異なり、販売代理店を用いることを発表した。米国本社でもArrow Electronicsと契約、Arrowルートで一般顧客に売っていくことを決めた。日本でもその日本法人を通じて販売する。これまでのクアルコムは、顧客がスマホメーカー、と決まっており直販しかとってこなかった。このため製品広告を打つこともなく、通信モバイルの世界だけに閉じこもっていた。これからは一般市場にも参入するという訳だ。

 

さらに製品寿命に関しても開発スピードが違う。クアルコムはスマホ向けに寿命2~3年を考慮するビジネスに特化してきたが、NXPが持つクルマや産業の分野では10年の製品保証、寿命が求められ、設計サイクルもこれまでほどは短くない。クルマや産業機器は信頼性保証はマストであり、品質管理体制もまるっきり変えなければならない。

 

NXPが持つ製品ポートフォリオは広い。マイコンやプロセッサ(旧フリースケール)、ディスクリートや標準ロジック、インターフェース、AV用インフォタインメント、RF、パワーマネジメント、センサ、ID認証とセキュリティなどからなる。NFCカードやFelicaカードなどに強いNXPID認証とセキュリティには極めて強い製品を持っている。NFC仕様の基本は、汎用的なRF回路とセキュリティ回路を分離して、カードというハードウエアに依存することなく、電話やスマホなど様々な応用の認証に使うことを目的としていた。セキュリティと言っても、IDを中心としたセキュリティでは、産業機器やクルマのセキュリティ(ソフトウエアだけではなくハードウエアも含む)とは異なる。

 

NXPにはプロセッサでクアルコムとは異なるアーキテクチャがある。旧フリースケールが持っていたマクロプロセッサアーキテクチャi.MXシリーズやQorIQシリーズ、Powerアーキテクチャなどで、これらとも統合するとなると、リソース配分がきつい。それぞれのアーキテクチャのエコシステムはどうなるのか、パートナー企業は疑心暗鬼になる。かつて、日立製作所と三菱電機、NECエレクトロニクスが一緒になってそれぞれのプロセッサのアーキテクチャが乱立したことと同じ状況を迎える。

 

NXPにはかつてのルネサステクノロジのように、日立製作所と三菱電機のプロセッサの葛藤、さらに1本化したプロセッサを開発したかと思ったとたん、NECエレクトロニクスとの合併でVアーキテクチャも付いてきた。それぞれのマイコンやプロセッサのソフトを開発するエコシステムの人たちは当初、戸惑いを見せた。同じことがクアルコムのプロセッサSnapdragonプロセッサとNXP(旧フリースケール)i.MXQorIQPowerアーキテクチャでも起きる。

 

クアルコムとNXPの合併は大変だなという感想を持たざるを得ない。ここではあまりクアルコムの戦略を議論して来なかったが、クアルコムとNXPの合併、両社の企業文化の大きな違い、などは学生や研究室での面白い論文のネタになりそうだ。

                                 (2016/10/31)