エレクトロニクス業界の最近のブログ記事
SiCやGaNは次世代半導体ではない
(2022年8月20日 09:30)最近、あるベテラン半導体技術者と話していて、SiCやGaN、GaO2など新しい化合物半導体を次世代半導体と呼ぶのはおかしいね、という話になった。これまで最初に開発された半導体トランジスタはGe(ゲルマニウム)で作られていた。それがSi(シリコン)に代わった。その次は何か、と騒がれてGaAs(ガリウムひ素)やGaP(ガリウム燐)などの化合物半導体が開発された。青色半導体の材料としてGaN(窒化ガリウム)が登場してきた。半導体材料を研究してきてようやく実用化できそうになってきたのがSiC(炭化シリコン)だ。
図1 SiCウェーハ(2018年当時のローム製) 出典:筆者撮影
これらは化合物半導体ではあるが、当初は次世代半導体と呼ばれた。しかし、そう呼ぶにはふさわしくなかった。なぜならコスト的にも性能的にもシリコンLSIには適わなかったからだ。現在も次世代半導体も実はシリコンである。普遍的な半導体の価値は、集積化してさまざまな機能、システムをチップ上で実現できることだ。半導体トランジスタができてすぐ、IC(集積回路)ができた。しかもトランジスタ1個当たりのコストはほとんどゼロといえるほど少なくなったため、さまざまなシステムに使われるようになった。コストを安く作れる最高の技術がシリコンである。「神様の贈り物」とも言われる。
かつてシリコンよりも高速性能が得られるということで、GaAsのICを作ろうと研究開発が進んだ時代があった。実際、トランジスタ1個だけで比較するとSiよりも速い。これでICを作りコンピュータシステムを作ればSiよりも速いコンピュータができると期待された。1980年代は本気でGaAs ICが米国や日本で開発された。
ところがモノにはならなかった。シリコンは微細化が進むと共に性能上がり、消費電力は下がっていく。ムーアの法則に従い、シリコンICの性能はどんどん上がり消費電力は下がり、トランジスタの単価は無視できるほど安くなった。しかし、GaAsはウェーハそのものが大きくできず、シリコンとは違い価格が高く、しかも微細化できなかった。微細化するためのリソグラフィ装置がシリコン用に限られ、GaAs用には使えなかった。GaAsはSiよりも3世代くらい微細化が遅れた。シリコンだと90nm(0.09µm)ができた時に、GaAsでは0.25µmしか使えなかった。MOSやMISなどの電界効果トランジスタ(FET)が微細化できなければ性能は上がらず消費電力は改善されない。
のちに、GaAs ICの製品化を目指して開発していたVittesse Semiconductor社のCEOに聞いたことがある。なぜGaAsを止め、シリコンCMOS製品を提供するようになったのか。0.25µmまで微細化した時に、もはやシリコンのCMOSにはかなわなくなったことを悟ったからだという。この企業はシリコンCMOSのネットワークプロセッサやネットワークICの開発に切り替えた。
当初GaAsはSiに代わる次世代半導体ともてはやされた。しかし、集積化しても性能が出ず、しかもコストも下がらないために、Siに負けてしまったのである。GaAsやGaP、あるいはそれらの化合物は半導体レーザーとして通信機器や光ファイバの送受信器として大量に使われるようになった。GaAsはシリコンではできない光を発射する半導体だからだ。LEDとしても使われ、光の3原色のRGB(赤・緑・青)の内、青だけが長い間できなかったが、GaN材料で明るい光を出せるように改良が進み、今はRGB全ての光を半導体LEDやレーザーが出せるようになった。
また、トランジスタ単体や小規模のICなら今でもGaAsの性能はSiよりも高い。このため携帯電話やスマートフォンの送受信切り替えスイッチにはGaAsが使われている。
GaNやSiCは、高耐圧、大電流ではシリコンよりも性能が高く、電力効率は良い。そこで、パワー半導体に使おうというのが最近の動きである。確かにパワー半導体ではSiCやGaNはEMI(ノイズ)の大きさや使いにくさの面は残るが、シリコンのIGBTよりも性能は高い。しかも、SiのIGBTトランジスタでは必要だったバルキーなコイルやコンデンサを小さくできる。しかし、集積化はSiよりもしにくく、コストは10倍も高い。しかもコストはなかなか下がらない。SiCは固いし、処理温度は2000度にもなり、適切な炉を安く入手できない。ただし、高くてもトランジスタ単体として使う用途にはSiのIGBTを置き換える可能性はあるが、シリコンIC全体を取り替えるほどのメリットはない。
SiCやGaN、GaO2などは新しい化合物半導体であり、単体や小規模のICではある程度成長するだろうが、ICの主流には決してなりえない。だから次世代半導体というべきではない。今や「半導体」という言葉には、数十億トランジスタを集積した「半導体IC」の意味を含んでいるからだ。
TSMCが使う最先端のFinFET技術は日本人の発明
(2022年8月10日 00:25) FinFETの発明が日本人って知ってるかい?
2年くらい続いた半導体不足がさまざまな産業で影響を与えたせいか、半導体の専門用語であるFinFETという言葉を専門家ではない方たちまでが使うようになってきた。このFinFETとは、半導体集積回路(IC)の基本トランジスタであるMOSFETの変形であり(図1)、性能や消費電力の点で、従来のプレーナ型MOSFETよりも優れたトランジスタだ。集積化しやすく、小さな面積でトランジスタを小型にできるため、高集積ICにも適している。トランジスタがまるで魚のヒレ(fin)の形をしているため、FinFETと名付けられた。
図1 FinFETの概念図 出典:久本大氏、日立製作所
FinFETのFETは電界効果トランジスタ(Field
Effect Transistor)の略で、入力に電圧をかけると出力電流が流れるトランジスタ。トランジスタを最初に発明したベル研が開発したトランジスタはnpnとかpnpとか呼ばれるバイポーラトランジスタで、入力に電流を流すと出力に大きな電流が流れる。
現在、半導体といえばMOSFETを多数集積したICのことを指している。入力のゲートに電圧をかけられるように、半導体部分から絶縁されている。その構造がゲート電極(メタル:Metal)、絶縁膜(酸化膜:Oxide)、半導体(Semiconductor)というMOS構造をしているため、MOSFETと呼ばれている。
MOSFETの最先端版であるFinFETは台湾のTSMCや韓国のSamsung、そして米国のIntelという3社だけが製造できる特殊な最先端のトランジスタだ。しかし、これを開発したのは、日本の日立製作所に現在も勤務する久本大(だい)さんである(図2)。特許も取得しているが、残念ながら発明したのが早すぎて、すでに切れている。
図2 久本大氏 日立製作所中央研究所に在籍していた時にFinFETを発明した
久本氏がFinFETを発明し、それを1989年の国際電子デバイス会議(IEDM)で、学会発表した時は、DELTAトランジスタと呼んでいた。Fully
Depleted Lean-Channel
Transistorを略してそう命名した。しかし、彼が米国カリフォルニア大学バークレイ校(University
of California, Berkeley)に研究員として1990年代に共同研究していた時にFinFETの開発を進め、彼と共同開発していたChenming
Hu教授がFinFETと名付けた。同じような頃、Intelはトライゲート(TriGate)トランジスタと呼んでいたが、結局FinFETの名前が定着した。
Intelの呼び名は、FinFETが半導体を3方向からゲートで囲んでしまうことに起因している。3方向から囲むとリーク電流が流れにくくなり、消費電力の削減効果は大きい。また、一気に流れるため、FinFETは理想的なデジタルスイッチに近い。
久本氏は現在、日立製作所研究開発グループのサステナビリティ研究統括本部電動化イノベーションセンタの技術顧問である。ワイドギャップ半導体であるSiCの新しいMOSFETを日立が発表した後に同社の研究所を取材したした時に、対応した若手エンジニアから久本氏の名前が上がり、部下が尊敬の念を持っていることがうかがえた。また、別の取材でも久本氏の名前が若手から上り、やはり若いエンジニアから慕われていることを強く感じた。
ただ日立製作所は現在、パワー半導体しか手掛けておらず、ICに関してはルネサスが関係しているが、ルネサスの資本の3.47%しか持っていない。半導体が成長産業であることを台湾だけではなく、米国、欧州でも力を入れているのにもかかわらず、日本の総合電機がその重要性を認識していないことは極めて残念である。おそらく日本の産業界全体にとっても半導体という成長産業の軌道に乗れないことは、経済成長から逸脱してきた過去と無縁ではないだろう。
経済安全保障の観点からは製造だけを強化してもユーザーが日本にいなければ海外を開拓していかざるを得ない。残念なことに別の総合電機のトップは、半導体は外から買って来ればよく、自社で作るものではない、という認識を未だに持っている。半導体製造装置や材料の業界は、日本のユーザーではなく海外のユーザーにすぐ転換できたから、いまだに強い。日本の半導体は総合電機の親会社がいつまでも支配している状況だったため、世界の顧客と共同開発するという体制を取れなかった。
幸運にも最近のルネサスは買収したシリコンバレー企業のリーダーたちをルネサスの経営陣に取り込み、共同運営するという形のグローバル企業へと脱皮したことで、海外からの注文、デザインイン(共同開発設計)を多数取り込むことができ、2022年の2Q(第2四半期)には前年同期比73.1%増という驚異的な成長を遂げた。シャープを台湾の鴻海精密工業が経営してから復活したことと無縁ではない。ルネサスのやり方は、ニッポン半導体がとるべき経営手法の一つとして、参考になるかもしれない。
日米経済版2+2に見える米国のプレッシャー
(2022年7月30日 15:19) 米ワシントンで外務・経済閣僚協議会である「経済版2+2」が初会合を開き、次世代半導体の量産への協力を進めることで日米が合意した。まるで日米対等な立場での経済協定のように描かれているが、実情は全く違う。完全な米国主導だ。
図1 7月29日の経済版2+2 出典:外務省ホームページ
ITサービスからIT機器、半導体製品、ファブレス設計、設計ツール、半導体製造、製造装置、材料という一連の半導体のサプライチェーンの中で、米国が弱いのは半導体製造と材料だけ。残りは圧倒的に強い。米国は半導体製品5割のシェアを持ち(日本は1割以下)、ITサービスにはGAFAがいる。対して日本は半導体製造装置と材料だけが強いものの、残りは圧倒的に弱い。この関係を理解していれば、今回の協定は米国主導であることがわかる。
米国の言う経済安全保障とは、半導体製造だけを台湾に任せているという状況から何とかして米国へ戻し、半導体のエコシステムを米国内で完結したい、ということである。米国はIntelやGlobalFoundries(GF)の半導体製造技術の遅れを危惧する声が防衛関係にある。このため、米国内でファウンドリビジネスを促進すると声を出した、ミネソタ州を拠点とするSkywater
Technologyに対して、国防総省は(DoD)はチップレットやパッケージング技術でカバーする。Skywaterはやっと90nmノードのプロセスの開発キットを用意したばかりだが、これでも勝負できるのだ。
しかし、ここにきて527億ドルの支援を両院議会でやっと決議した。この動きをにらんでIntelはPat Gelsinger CEOがアリゾナだけではなくオハイオ州に11兆円の投資をはじめ、欧州にも幅広く半導体工場や研究所を設立することを矢継ぎ早に発表した。これも欧州で同様なCHIPS法案が決まり巨額の補助金を用意したからだ。BoschやInfineonも新工場を稼働させたほか、この法案を当てにしたSTMicroelectronicsもGFと組んだ工場新設へと動き出した。欧州は、いまは日本と同じ世界シェア10%しかないが、これを2030年までに20%に引き上げようという明確な目標を掲げている。
米国は保険として、日本でもファウンドリや半導体製造を強化してほしい、ということが本音。軍事同盟国である日米が共に半導体製造を強化できれば、万が一、台湾が中国に侵略されても重要な半導体を確保できる。そのような体制を築きたいのが米国だ。
こういった世界の動きに対して、日本でも日本政府の支援を当てにして、TSMCの熊本誘致だけではなく、ルネサスの古い甲府工場をリニューアルし直して300mmラインの新設や、キオクシアがWestern Digitalと共同運営している四日市工場への巨額の投資も始まっている。
ただ、日本が世界と同等に戦っている半導体企業はこれらに加え、ソニーの3社しかない。これではなかなか日本の半導体産業の世界シェアを上げることは難しい。そこで、ファブレス企業やファウンドリ企業もこれから立ち上げれるように支援すべきだろう。それも3nmや2nmなどの微細なプロセスノードを狙うのではなく、40nmや、市場の広い28nmプロセスのファウンドリから始めてもよい。そして半導体を理解できるようなICユーザーがいなくなった今(かつては総合電機がユーザーだった)、システムを差別化するのはソフトウエアだけではなく半導体チップ(ハードウエア)でもあることを認識させる活動も必要だろう。
例えばクルマは、今後ソフトウエア-デファインド・ビークル(Software-Defined Vehicle)になるといわれており、これを実現するハードウエアこそ半導体ICである。これって実はクルマのコンピュータ化のこと。コンピュータはSoftware-defined
machine、つまりソフトウエアで機能を自由に変えられるマシンだからだ。コンピュータシステムの機能の差別化はソフトウエアであるが、実は性能の差別化は半導体によるところが大きい。
となると、日本の半導体を強くするためには半導体を購入するIT機器メーカー、その先にいるITサービスプロバイダも活躍してくれなければできない。さもなければ、日本で作った半導体チップを買ってくれる外国企業と積極的にディスカッションし売り込める人材を育成する必要がある。半導体がITの3大要素(残りの二つはコンピュータと通信)の一つになった以上、ITをもっと活性化させることが半導体立国への復活につながる。ITはソフトだけではなくハードも重要であるからこそ、両方を強くする教育、すなわちSTEM(Science, Technology, Engineering, Mathematics)教育を充実させることが半導体やIT復活させ日本の復活のカギとなる。
「微分積分なんになる」、「三角関数なんになる」というような政治家が国の中枢部にいるようでは、未来は全く開けない。STEM教育の充実こそ、将来の量子コンピュータや量子暗号、セキュリティ、バイオテクノロジー、ロボティックス、AI、自律化、メタバースなどの基礎的な学問なのである。これらの技術を使えばデジタルトランスフォーメーションやスマートシティ、スマート化の原動力となる。
ファブレスIC半導体は年率13%の高成長産業
(2022年7月 8日 12:14)図1 ファブレス半導体は大きく沈んだことがない超優良な成長産業 出典:IC Insights
それでも、IC半導体は大きな成長産業である。しかも現在、60兆円を超す巨大産業でもある。この巨大産業が年率平均10%で成長し続けているのだ。この規模で高成長を続ける産業は他にはない。
中でも工場を持たない、設計だけのファブレス半導体の方が成長率は高い。年率平均13%というとてもなく高成長の産業である。この「おいしい」ファブレス半導体産業に日本は長い間世界の上位10社に一度も入ったことがない。この分野は米国が圧倒的に強い。しかし台湾も頑張っている。特にMediaTekは2021年には第4位にランクされている176億ドル(約2兆円)企業だ。さらにNovatek、Realtek、Himaxの台湾勢もランクインしている。トップ10社の内、米国6社、台湾4社が占めている。
この結果、2021年にIC全体5105億ドルに占めるファブレスIC半導体の割合は34.8%の1777億ドルと1/3以上を占めるようになった。ファブレスの勢いに残念ながら、わが日本は全く付いていっていない。
台湾は国策でファブレスを強化
台湾がここまでファブレスに強くなった理由の一つは、国(注)を挙げてファブレスを強化したからだ。1990年代半ばにTSMCとUMCはファウンドリで着実にビジネス実績を挙げてきた。中国でもファウンドリによるブームが起き始めていた。製造部門がやがて中国に移るかもしれないため、台湾はファブレス設計を強化しておこうと政府は考えたのである。
それを受けて1997年に設立されたMediaTekは当初はCD-ROMドライブ用の読み取りICで大成功を収めた。日本のCD-ROMチップを手掛けた半導体メーカーが特定の規格の読み取りICしか生産しなかったことに対して、MediaTekの読み取りICはCD-ROM装置が持つ全ての規格をカバーした。汎用化させることによって、MediaTekのICと三洋電機の光ピックアップさえあれば誰でもCD-ROMを作れると言われるようになった。余談だが、三洋のレーザーピックアップはその当時定評があった。
MediaTekの優れた製品戦略は、その後も汎用性のあるICを開発するという姿勢を示し続けた。CD-ROMの延長で、DVDやBlu-RayレコーダやHDTV用のICなども設計したが、大きく成長させたのは、携帯電話機のモデムチップ、さらにはアプリケーションプロセッサだった。特に3G、4Gのスマートフォン向けチップで世界的なファブレス半導体メーカーとなった。今や5GでQualcommに対抗できるのはMediaTekしかいない。
日本は、汎用性のあるチップ設計が弱い。特定ユーザー向けのASICチップは言われる通りに作るだけなので強かったが、汎用ユーザー向けに最大公約数の仕様を見つけるという作業ができなかった。こういったマーケティング作業に力を注いでこなかった日本における現在のファブレスは、特定企業向けのICという、いわゆる下請け体質から抜けきっていない。だから世界的な企業になり切れない。特定企業向けではなく、特定用途向けのIC設計を日本はもっと強くしなければならないが、経営者の姿勢にも問題が多く、なかなか特定用途向けの設計は苦手である。だが、MediaTekの考え方を日本の経営者が謙虚に学び実行するという姿勢を持てば、実現できないことではない。
注)日本政府は台湾を国として認めていないが、ここではあえて国(中華民国)と表現させてもらう。中国は一度も台湾を支配したことのない国だからである。台湾はかつて「流求」あるいは「瑠求」と呼ばれていた(筆者は北京の歴史博物館で確認した)。沖縄がかつて琉球王国であったが、「流求」や「瑠求」はまさに「りゅうきゅう」と読める。琉球王国は、日本と中国の両方に貢物を納めていたという歴史があるが、中国が台湾、すなわち「流求」を支配したことは一度もない。このため、中華人民共和国が台湾を中国の一部と呼ぶことは理に適っていない。
「三角関数なんになる」、愚かな知識人
(2022年5月21日 09:52) 三角関数より文学が大事とか、金融経済が大事とか、大事な学問を馬鹿にする発言はいつの時代でもあるようだ。全部大事なはずだ。決して比べるものではない。自然と比べると人間の知識は微々たるものだ。偉大な科学者ほど自然界の不思議や深さをよく知っている。逆に自分が理解できないことを、「そんな学問なんになる」と切り捨てる態度は、不遜でしかない。むしろ自分の無知をさらけ出してどうする?
学者は人間が不思議に思うことを、学問づけて理論的に体系化する。それは重要な仕事であり、「そんなもの、なんになる」と片付けることでは決してない。例えば、音声認識のアルゴリズムを研究すればするほど、人間は言葉をどう理解しているか、発音はどのように脳に入っていくのか、ということに対してモデルを立てて音声を理解できるマシン(ソフトウエアや半導体チップ)を作ってきた。さまざまな知識を総動員して技術として完成させる。
筆者は金融のことは苦手だが、デリバティブで有名なブラック-ショールズの方程式は理解できる。この微分方程式は、時間と共に変化する状態をある物理量で表現している訳だが、これも「微分積分、なんになる」と言われた時代もあった。微分方程式とは何か、微分とは積分とは何を表しているのか、という基礎をしっかり押さえておけばブラック-ショールズの方程式は理解できる。
三角関数も同じだ。回転はある意味、無限運動だが、それを数学的に表現すれば角度情報が必要な三角関数になる。音や電磁波は波の性質を持つため、波として表現できる。土木建築で使う三角測量、携帯電話の電磁波回路の設計、モーターが滑らかに静かに動くような設計、地震に強い建物の設計、地震による津波の予測など、三角関数は人類の役に立つ仕事に大いに生かされている。
「三角関数、なんになる」は自分の無知をさらけ出している愚かな知識人ではないか。なぜなら、そのような発言をする前に自分で勉強すべきだからだ。自分が理解できないことを「~~、なんになる」発言は、社会的に知名度の高い立場にいる人間は決して使うべきではない。影響が大きいからだ。
いつまでたっても成長しない中国の半導体産業
(2022年5月21日 09:07) 中国政府が何兆円を投資しても半導体製品のシェアがちっとも高まっていない。中国内の半導体IC市場に対して、中国生産IC製品の市場シェアは2012年に12.7%しかなかったのに10年間でわずか16.7%に留まっている(図1)。中国政府が旗を振る「中国製造2025」計画では2025年には70%シェアという目標だが、どう考えても達成は無理だろう。なにせ10年で4%ポイントも上がらなかったのに今年も含めて残りの4年で54%ポイントも上げなければならないのだから。
図1 中国国内のIC市場と中国製半導体ICの販売額 出典:IC Insights
なぜ中国政府は半導体に力を入れても企業は世界レベルにならないのか。その答えを求める前に、中国政府はなぜ半導体産業を盛り上げようとしているのか。その答えは図1を見ればすぐわかる。中国国内で使う半導体ICの市場規模は、2021年に1870億ドルであったが、中国産のICはその16.7%の312億ドルしかない。つまり、中国は1870-312=1558億ドル分(20.2兆円)のIC製品を輸入しているのである。逆に言えば、半導体IC製品のために20兆円もの外貨が流出した。それもグラフを見る限り、いつまでも毎年その程度のドルが流出することになる。これは中国共産党政府にとっては容認できない。だから内部で作れ、という訳だ。
共産党政府はそのために国家ファンドを作り、年間数兆円相当の投資を行ってきた。輸入超過の半導体産業による外貨流出を防ぎたい中国政府は、外国(韓国Samsungや台湾のTSMCなど)の大手半導体に対しても大歓迎で受け入れている。中国生産の312億ドルの内60%以上が外資による生産である。中国の地場企業のシェアは中国市場の6.6%しかない。共産党政府にとっては半導体を国内で生産したくでもできないのが現状だ。
その理由の一つとして、肝心のエンジニアが中国内にはいない。そこで、台湾、韓国、日本から半導体関係者を大量に採用している。中国人エンジニアが自立するまでのつなぎとして、例えば台湾から3000名以上を採用しているという。ただ、政治的に東西対立が目立つと、人材確保はますます困難になる。また台湾では経済スパイ法を成立させ、実質的に技術者の中国行きを防ぐ法案を2022年5月20日に成立させた。
中国の学生は半導体産業にどのくらい来るのか、業界関係者に質問したことがあるが、残念ながら学生はアリババや百度、テンセントなどのインターネット企業にばかり行く、という。半導体にはさっぱり来ない、と嘆く。筆者は2000年ころにSMICが起業され中国で半導体製造ブームがやってきた頃、地元の半導体企業を10社ほど取材したことがある。最も苦労したことは人材確保であった。「中国の若い学生は安易に金儲けできるところにすぐ行く」という声を至る所で聞いた。この状況は今でも変わっていない。先ほどの中国における業界関係者の言葉は現在の発言だ。
半導体製造技術では、固体物理学や量子力学、プラズマ化学、光化学、光学、熱力学、もちろんニュートン力学、電子回路、電磁気学、IT、データ解析、ソフトウエア、コンピュータ科学、数学、通信工学など幅広いさまざまな勉強が必要である。簡単にちゃちゃっと習得できる技術ではない。「三角関数なんになる」という愚かな知識人や政治家が重要な産業を理解できないのは日本だけではない。
米国は実は、半導体産業では圧倒的に強いのにもかかわらず、「中国の脅威」を議会や世の中に訴求することで、巨額の補助金を出そうとしている。日本は本当に半導体産業をちゃんとしないと中国よりもダメになるリスクは残っていることをもっと自覚すべきであろう。円安、輸入超過、経済没落の道筋は他人ごとではない。
日本の半導体ICメーカーのシェアは2年連続6%
(2022年4月 9日 15:12)2021年の世界半導体ICメーカーの国別市場シェアが発表された。これによると1位米国54%、2位韓国22%、3位台湾9%、4位は欧州と日本が6%、6位が中国の4%、となった(図1)。これは米市場調査会社のIC Insightsが発表したもの。ここから見えることは米国が今でも世界ナンバーワンの半導体王国であることだ。
図1 2021年の世界半導体ICメーカーの市場シェア 出典:IC Insights
最近、米国は議会を動かして半導体製造に関する予算520億ドルの議案で、下院を通過させた。米国は圧倒的に半導体産業では強いのにもかかわらず、中国が躍進しており、脅威になると米国世論を動かして予算獲得に動いた。なぜか。半導体のサプライチェーンを構成する上で圧倒的に強い部分は目をつぶり、弱い製造技術を何とかしようと動いたからだ。半導体産業のサプライチェーンは図2のようになる。
図2 半導体ICのサプライチェーンの全体像 米国は製造を除き圧倒的に強い 出典:筆者作成
米国が弱いのは、ICファウンドリとOSATだけであり、製造を強化すれば盤石となる。これに対して日本は、IC製造装置と材料だけは強いが、半導体メーカーもユーザーもITサービス業者も全て弱い。半導体だけ強くしても買ってくれる企業が日本にいない。ITサービスからIT機器メーカーも強くしなければ日本全体が強くならない。
逆になぜIC製造装置とIC材料メーカーが強いのか。かつてお客であった日本の半導体ICメーカーを諦めて、さっさと海外のICメーカーに売り込んできたからだ。例えば世界レベルの東京エレクトロンの海外売上比率は85%にも及び、ICテスターのアドバンテストのそれは92%以上にもなる。つまり日本の強い産業は海外で売り込むことに成功したことで大きく成長してきたのである。
一方、日本のICメーカーは、まだ内弁慶な所がある。確かにキオクシアやソニーセミコンダクタソリューションズはAppleのiPhoneに大量に使われるようになってから大きく伸びた。しかし、これはApple側から寄ってきたことによる。AppleはライバルSamsungの半導体や液晶製品を使いたくなかったため、NANDフラッシュメモリはキオクシア、CMOSイメージセンサはソニーから購入している。また中国の華為は10年ほど前に積極的に日本にやってきて部品の調達を始めた。その時にキオクシア、ソニーの顧客になった。つまりどちらも相手から寄ってきたケースだ。ご存知のように米中貿易戦争で華為へ部品を納入できなくなった後、キオクシアもソニーも華為以外の中国の小米やOppo、Vivoなどスマホの世界的メーカーへ納入するチャンスはあったのに逃した。このため成長率が小さくなった。
日本の半導体ICメーカーが成長するためには、海外の顧客を積極的に獲得しなければならない。ルネサスが2021年に前年比48%も成長できたのは、買収した米国企業のマネージャーを経営陣として迎え入れたことが大きい。特にシリコンバレーに拠点を持つIDT出身のSailesh Chittipeddi氏をIoT・インフラ事業本部のトップに据えた。ルネサスは大きく分けて車載事業と、IoT・インフラ事業の2本柱だが、クルマは日本にユーザーがたくさんいる上に日本の強い分野であるからトップは日本人の片岡健氏だが、IoT・インフラ事業本部の4名の役員は全て外国人で構成している。社員全体で「日本人は少数民族になりました」という声も聞いた。
彼らを経営陣に加えたことで、海外の顧客を獲得することは極めて容易になった。かつては全く手の届かなかったインド市場でも顧客を獲得しデザインインを次々と始めている。また、日本はアナログ半導体が強いと言われるが、実はイノベーティブなアナログ回路は米国の方が圧倒的に強い。IDTに加え、Dialog SemiconductorはパワーマネジメントICやLEDドライバICなどアナログ回路に長けており、Appleが惚れ込んで採用した白い四角い電源アダプタはDialog製品が省エネだったから生まれた。さらにDialogが買収したSilegoは小規模のFPGA製品ラインを持つ。IDTはワイヤレス充電用ICに強い。ルネサスはWi-Fi用ICも手に入れ、もうグローバル企業への脱皮が終わりつつある。
新顧客の開拓にシリコンバレーをフル活用し、アイデアを共有し日本でも展開することも始めている。ルネサスは、もうかつてのダメルネサスではない。
日本の半導体がこれから強くなるためには、ルネサス流のやり方は一つの参考事例として考えてみる価値はある。シリコンバレーのアイデアを知り、理解し、それを実践することでシリコンバレーの顧客を獲得し、さらにそこから世界展開へと持っていく。日本のITは全く弱いからこそ、見切りをつけてさっさと海外の顧客と一緒に未来の製品の話し合いを始めてはどうだろうか。
過半導体って何だろうか?
(2022年4月 1日 16:32)京都工繊大学教授の小林和淑さんから「過半導体」という言葉を広めてほしいと言われた。この半導体不足のご時世に「過ぎたる半導体」とは何だろうか、と思った。同氏に問い合わせてみると、コンセントに差す電気製品は全て半導体を使っているという意味だという。半導体がいっぱいあるということを表している。確かに、コンセントや電池を使う電化製品にはほぼ100%半導体が入っている。
図1 京都工繊大学教授の小林和淑氏
それだけではない。RF-IDのように電池も電源もないICチップでさえある。電源なしで半導体ICは動く、と言うと誤解されやすいので、一応ざっと説明しておくと、RF-IDだって電池はないが電源回路はある。RF-IDのリーダー(読み取り機)、例えばJRのICカードである「スイカ」は、改札口の上の丸い模様の位置にカードを置くと読み取ることができる。丸い模様の位置からカードにRF(高周波)電波を発射し、カード側で高周波の電波を受け取り、その電波のエネルギー(交流)を整流し直流へ変換し直流電源とする。その直流電源で小さな主回路を動作させ、カード内に蓄積された金額情報と日時を満たしているかどうかをチェックし、格納されている金額以内などであれば、改札のバーが開く、という仕組みである。極わずかのエネルギーだけで動作できるため、電池もコンセントも要らない。「数百円の商品もRF-IDタグで管理できる時代に」で書いたユニクロの商品タグもまさにRF-IDである。
実にいろいろな所に半導体ICチップが使われている。産業としても実に日本に適した産業なのに残念ながら総合電機の経営者は半導体を手放してしまった。しかも40nm以下は設計も製造も開発してはいけない、と上司から言われたエンジニアも少なくない。半導体産業の重要性を認識も理解も経営者ができなかったために今日の悲劇を招いた。悲劇とは、世界の半導体産業が成長し続けているのにもかかわらず、日本だけが成長していない、という経済のGDPと全く同じ動きを半導体産業がしていることである。
しかし、今からでも遅くはない。半導体産業はこの先20年も30年も成長し続ける産業だからこそ、政府が何とかしようという考えは評価できる。半導体が盛んになり雇用が増えれば経済的にも豊かになれるからだ。成長し続ける理由は三つ:(1)ムーアの法則は2次元から3次元へと形を変えて続く、(2)新技術が今も出現し続けているため、数年後には量産が始まる、(3)人間の知恵であるソフトウエアをチップに埋め込むことができる。この三つに限界はまだ見えていない。
世界が成長し続けているのに日本だけが成長していない。日本しか見ていなければ、これが普通だと思ってしまう。一方、成長している世界から見ると日本は時計が止まっているように見える。例えば韓国のテレビ局の記者から、「新型コロナではっきりしたことですが、なぜ日本の官庁や企業はこんなにITが遅れているのですか?」と聞かれた。日本も世界と一緒に成長していかなければ、給料が増えるどころか減りながら物価が上がるという超円安の状況になりかねない。インフレでお金の価値が下がりながら給料は増えないのである。
すでにその兆候は見られる。シリコンバレーの一角であるサンフランシスコベイエリアでは、年収1200万円が低所得者層と言われている。決して冗談ではない。日本が成長して世界と競争できる社会に変えていかなければ本当に没落していく。
CPUコアの民主化、RISC-Vが本格的に離陸
(2022年3月21日 09:53)米カリフォルニア大学バークレイ校のデビッド・パターソン教授らを中心に開発されてきたRISC-V(リスクファイブと発音)というライセンスフリーのCPUコアの採用が増えている。ルネサスエレクトロニクスがRISC-Vコアを用いた64ビットマイクロプロセッサを開発し、バークレイ発スタートアップのSiFive(サイファイブと発音)がシリーズFで1億7500万ドル(約200億円)を調達、チェコに本社を持ち英仏のデザインセンターで本格開発を始めたCodasip社(図1)が日本にもオフィスを作り本格活動を始めた。
図1 CodasipのCEOとなったビジネスに強いRon Black氏 出典:Codasip Website
RISC-Vそのものは、命令セットを必要最小限の47個にとどめ、カスタマイズで拡張できるように決めているのが特長だ。対して同じRISC(Reduced Instruction Set Computer)でもArmの命令セットは下位互換性を持たせることにより500程度にも膨らんでいる。もちろんCISC(Complex Instruction Set Computer)のIntelプロセッサのそれは1500個にも及ぶ。RISC-Vは誰でも自由にCPUを改変できるため、OSのLinuxに似ている。狙いはCPUコアの民主化にある。
バークレイ校がRISC-Vを開発したのは、ライセンスフリーが目的ではなく、今後の高集積なSoC(システムLSI)にはCPUの他、GPU(グラフィックプロセッサ)やDSP(デジタル信号プロセッサ;積和演算専用のマイクロプロセッサ)、ISP(映像処理プロセッサ)などさまざまなプロセッサを1チップや1パッケージに集積するため、命令セットを統一しておこうという目的だった、と同校の教授でありSiFiveのチーフアーキテクトでもあるKrste Asanovic氏は語っている。基本命令セットを揃えておけば、いろいろなプロセッサコアを集積しても拡張しやすい。
ルネサスのRISC-V汎用マイクロプロセッサには、台湾Andes Technologyが開発したCPUコアを用い、8段のパイプライン構造を持ち、最大4コアまで対象的なマルチプロセッシングができるレベル2キャッシュや共有キャッシュメモリを搭載している(参考資料1)。実は、AndesやSiFiveは、マイクロアーキテクチャレベルのRISC-Vコアを自社で加工し、パイプライン構造を設けたりキャッシュメモリを集積したりして、実用的に使えるレベルのCPUコアを開発し、ライセンス供与している。
もちろんルネサスの開発力ならRISC-Vコアから使えるレベルのCPUコアに自前で仕上げる技術力はあるが、64ビットのMPUは開発期間の短縮を配慮してAndesのIPコアを利用した。SiFiveのコアを利用するプロセッサも開発中で、同時に自社でもRISC-VコアからMPUに仕上げる開発も進めている。
SiFiveとAndesに加えてIPベンダーに参入してきたのがCodasipだ。元々RISC-V Internationalの創設メンバーの1社であったが、ビジネス的には遅ればせながら2018年にシリーズAで1000万ドルを調達、本格的に世界展開し始めた。Codasipの特長は、マイクロプロセッサのカスタム化をしやすくした自動化ツールCodasip
Studioを提供できること。カスタム命令を追加しやすくして、アルゴリズムを高速化する用途に向く。基本命令47個から出発するため、より簡単に、より速く、より安く設計することに主眼を置いている。Codasip Studioを使ってコードを書くことで、HDK(ハードウエア開発キット)とSDK(ソフトウエア開発キット)を自動生成できる。
IPベンダーのSiFiveは1.75億ドルの調達によって、同社の時価総額は25億ドルを超えるようになるという。来年IPO(株式上場)を目指し準備を始めている。
RISC-Vの本格的な展開で、これまでとは全く異なる環境に晒されるのがArmだ。さまざまな企業からライセンスが高い、ロイヤルティも高い、と言われ続けてきた。成熟したCPUコアにはRISC-Vを意識してライセンスフリーの製品も発表してきたが、ここに来て社員数を最大15%削減することを検討している。
Nvidiaへの売却を断念したソフトバンクグループがArmをIPOするための一環として社員の削減になったようだ。思えばArmがソフトバンクに買収された直後はまだよかった。株主からの期待とプレッシャーで長期的な開発ができなかったが、SBGに買収されてからはこのようなプレッシャーから解放された。また、英国政府からの要求もあり、Armの雇用を増やすという目標も買収条件に合った。このため従来とは違い、収支を第一に考えることなく研究開発費を増やしてきた。
しかし、Arm Chinaの株式をソフトバンクが中国のファンドに売却、それも49対51でArmがマイノリティになった。Arm
Chinaのトップが不祥事を起こし、解任決議を行ったものの、Arm Chinaの経営陣は何事もなかったとして業務を継続した。この辺りからSBGとArmとの間に秋風が吹くようになった。最悪の事態が、SBGが大きく出資しているSVF(ソフトバンクビジョンファンド)がWeWorkというシェアオフィスのスタートアップに何と1兆円もの大金をつぎ込み、SBGの屋台骨が揺らいでしまった。これを補填するためにArmを手放すことになったのだ。
それもSVFが出資するNvidiaに売却することで、キャッシュを得ようとした。しかし、NvidiaによるArm買収はArmの中立性が崩れ独禁法に抵触する恐れがあるということで英国政府から拒絶された。そこで、SVFの錬金術として、ArmのIPOを企てることでキャッシュを得ることになった。しかし、IPOへの準備となると必要以上に採用したため、社員を15%カットするという手で財務の健全化を図ろうとしている。
参考資料
1. 64ビットRISC-Vマイクロプロセッサを出荷したルネサスが大きく変身、News & Chips、2022年3月2日
64ビットRISC-Vマイクロプロセッサを出荷したルネサスが大きく変身
(2022年3月 2日 17:05)Armに代わる無料のCPUコアとして注目されているRISC-Vコア。この64ビット版の汎用マイクロプロセッサ(図1)をルネサスエレクトロニクスが開発、サンプル出荷を始めた。RISC-V(リスクファイブと発音)はフリーのCPUコアであり、OSのLinuxのようなフリーのオープンソースである。誰がこれを使って開発してもライセンス料は要らない。
図1 ルネサスがサンプル出荷した64ビットRISC-Vマイクロプロセッサ 出典:ルネサスエレクトロニクス
ただし、ゼロからCPUコアを使えるレベルまで開発しようとすると長い期間がかかり、ビジネス機会を失ってしまう恐れがある。そこで、マルチコアやパイプライン構成にも対応して使えるレベルのRISC-Vコアをすでに設計している企業の製品を利用すると最も手っ取り早い。ルネサスは台湾のIPベンダーであるAndes TechnologyのRISC-Vコアを利用して64ビットのマルチコアを導入したマイクロプロセッサを開発した。ルネサス自身がフリーのRISC-Vコア(OSで言うところのマイクロカーネルのようなもの)を使ってマイクロプロセッサやアプリケーションプロセッサを開発する能力はもちろんあるが、T2M(Time-to-Market)を優先して、今回はAndesから購入した。当然、完全フリーのRISC-Vコアも開発も始めている。
ルネサスはこれまでArmコアのSoC(システムLSI)や独自のコアでのマイコンなどを開発してきたが、これまでの製品にRISC-Vの選択肢も増やした。ITやエレクトロニクス産業ではArmからRISC-Vへ移行するものではなく、共存すると考えられている。RISC-Vはフリーとはいえ、実用的な性能・機能を満足させるためにはこれをコアとして半導体回路やソフトウエアを開発しなければならない。そのためのエコシステムがとても重要なカギを握る。
Armが圧倒的に強いのは、1000社からなるパートナーのエコシステムを構築しているからだ。新製品を開発発表しても、すぐにソフトウエアを作ってくれるパートナー企業がいる。実はルネサスも独自コアやArmコアを中心としたパートナーエコシステムができている。ここにRISC-Vも加えることで、パートナー企業が集まりやすい環境がある。
今回、発表した64ビットRISC-Vコアのマイクロプロセッサは、顧客のためにソフトウエアを書いてくれるパートナー企業が必要となるが、そのためのルネサス全体のエコシステムを広げていく。ルネサスは単なるチップ設計・製造だけではなく、リファレンスデザインボードやソフトウエアも一緒に提供し、顧客はそれをすぐに試すことができる。半導体メーカーにとって今や単なるチップ売りではなく、チップをどう使えば機能や性能を発揮できるかを示すためのソリューションも提供しなければならない。メモリのような大量生産品ではそのようなソリューション提供は要らないかもしれないが、SoCソリューション提供がビジネスのカギを握る。
この考えは実は、SoC以外の半導体にも広がっている。よく、技術で勝ったのにビジネスで負けた、という言葉があるが、応用技術で負けていることが多い。すなわち応用技術を提供していなければビジネスを取れないのである。例えば、GaNという新しい半導体は、開発の段階を通り越してビジネスの競争段階に入っており、スマホの急速充電に多数使われている。この市場ではNavitas社がトップであり、電源の小型化、効率化ではPower
IntegrationがGaNデバイスのトップ企業である。つまり、使い方を熟知しているメーカーがデバイスの応用を示し顧客がすぐに使えるボードを提供した企業が勝ち組になる。GaNビジネスは初期に開発した企業がもう完全に抜かれた状況になっている。
シリコンバレー流ビジネスを持ってきた
ルネサスが今回、時間をかけてまでフリーのRISC-Vコアでプロセッサを開発するのではなく、使えるレベルに完成させたAndesのRISC-Vコアを使ったことはT2Mの点で理に適っている。そしてフリーのRISC-Vコアを使えるレベルまでブラッシュアップする作業は時間をかけて進めていく。この2段階の開発を進めるという考えは実はシリコンバレーからもたらされたものだ。つまり今回の開発を指揮してきた産業・IoT向けグループのリーダーであるSailesh Chittipeddi氏は、買収した旧IDTの経営陣の一人だった。ルネサス社員のなかで今や日本人が50%を切る状況になり、ルネサスは海外の知恵を採り入れ、海外企業と渡り合える企業に変身した。
これまで何回かSaileshさんの話を聴いて、とてもアンテナが高く、情報収集能力の高いことを理解できた。最先端のテクノロジーやITトレンドを即座に取り入れて指揮するという、このやり方こそシリコンバレー流儀といえる。2021年に前年比39%成長したルネサスはもはや、昔のダメルネサスではなくなった。今後の成長が楽しみだ。