エレクトロニクス業界の最近のブログ記事

なぜMEMSでも日本は弱いのか

(2015年4月28日 23:06)

421~22日、東京・両国でMEMS Technology Forum 2015が開かれた。その中で、なぜ日本はMEMSが弱いのか、という議論が語られた。その中で大学の先生が、三つの理由を挙げられていた;(1)バルクMEMSに固執しすぎ、(2)国との連携が不十分、(3)投資やビジネスでのディシジョンが遅い、という3点だ。この内、(1)と(2)に関しては同意できない。なぜか。

 

(1)は技術的な手法に関する問題であり、だからと言って日本が技術に弱い訳ではない。技術的には日本が優れている点は極めて多い。つまり、研究開発のフェーズでは日本の技術は劣っていない。しかし、ビジネスが世界から見て遅れている。

 

(2)は、国と連携すればビジネス的に強くなれる、と言っているようなものだ。これは全く違う。国家プロジェクトをたくさん作って、日本の半導体産業がますます弱体化してきた歴史があるではないか。国に頼るようなビジネスマインドでは世界とは戦えないのである。

 

(3)の経営判断が遅い、という点では全くその通りだが、この点は外国の方から言われたという。

 

つまり、以上のことから、大学の先生方は市場経済ビジネスを本当に理解しているのだろうか、と首をひねりたくなる。日本の国家プロジェクトに頼る体質と、かつて米国が連邦政府に頼って失敗した初期のSEMATECHプロジェクトとは共通する。市場経済は、企業が自分の判断で、責任を持ってビジネスを遂行するものだ。誰かに頼るとか、誰かのせいにするものではない。市場があるかどうか、自分でコストをかけて調査し、判断するものである上、市場が求めているアイデアを具現化し、製品化するのが基本だろう。

 

日本の大手半導体メーカーがMEMS市場に出遅れたのは、市場をきちんと把握しなかったからである。このためIoTInternet of Things)をベースとするセンサ革命の大きなトレンドを逃がそうとしている。MEMSに対しては、深いシリコンエッチングやメッキなどでシリコンLSIのクリーンなプロセスを汚したくない、という生産技術者の声もかつて聞いた。これは技術者が強く、技術を最重要視し市場を無視してきた態度であるといえる。つまり、MEMSプロセスがLSIプロセスを汚さないようにする方法を技術者が考えるという前向きの態度にならなかった。

 

これまでのMEMSビジネスは、インクジェットプリンタのヘッド(MEMS技術で作った微細な穴からインクを押し出す)や、テキサスインスツルメンツ(TI)が大成功を収めたDLPディスプレイ(DMD(デジタルミラーデバイス)のミラー部分をMEMS技術で作った投射型ディスプレイ)、自動車エアバッグ用の加速度センサ(微細なカンチレバー構造をMEMS技術で作る)、その他工業用のMEMSの圧力センサなどが主なMEMS製品だった。このため、プリンタビジネスに強いHPやエプソン、TIなどがMEMS市場のトップを占めていた。

 

YoleMEMS2014.jpg

ところが、MEMS市場は、スマートフォンに加速度センサが導入されてから一変した。スマホの画面を縦から横にすると画像も一緒に動いてくれるが、これはMEMSによる加速度センサが地面に対して垂直方向の重力加速度を検出することを利用している。スマホに導入されると、1台にたとえ1個のMEMSが使われたとしても年間で数億個の生産が求められる。つまりコストダウンが強く求められ、特にSTマイクロエレクトロニクスなどはこの要求に応え、スマホに載せることができ、2013年の世界市場をボッシュと並んでナンバーワンの地位を獲得した。日本の半導体産業は、この動きについて行けていない。

 

MEMS技術によって安価なセンサができるようになると世界はどう変わるか。これまで価格の高い工業用のセンサも安価にできるようになると、これまで巨大な装置に3個しか搭載できなかったセンサを30個搭載できるようになる。工業機械に大量のセンサを付けられるようになると、ダウンタイムゼロの機械を運転できるようになる。これがGEの提唱するIndustrial Internetである。機械が故障する前にMEMSセンサで機械の異常を発見できるため予防保守(preventive maintenance)が可能になる。そうすると、例えば風力発電のタービンに多数のセンサを付けておき予防保守ができれば、何kW発電するたびに料金をもらうというビジネスモデルが可能になり、売りっぱなしの製品ではなくサービス込みのビジネスができるようになる。

 

だから今、センサ革命が始まった、と言われるゆえんである。残念ながら、日本の半導体大手はセンサ革命の認識さえなかった。しかし、希望はある。中堅の半導体企業である新日本無線(NJR)は1年数ヵ月の間にMEMSマイクロフォンを2億個生産し出荷した。もちろん、用途はスマホである。現在のスマホにはMEMSマイクが1台に3個程度入っている。スマホにはクラウドベースの音声認識機能がある。認識率を上げるためには周囲のノイズを打ち消す機能は必須だ。マイクを2個使い、周囲の騒音を二つのマイクで拾い、その内の一つのノイズを180度位相反転させるとノイズを打ち消せる。あるいは複数のマイクからのノイズを打ち消すためのアルゴリズムを開発している企業もある。

                                             

MEMS技術は、市場を見ながら開発していれば、ビジネスを成長させることができる。MEMSとそのセンサ信号から意味を抽出するアルゴリズム、そして楽しいユーザーエクスペリエンスと組み合わせると、面白いことができそうだ。これに音楽や楽器、映像などを載せるデバイスは、きっと楽しいユーザーエクスペリエンスを実現するだろう。このためにはソフト、ハード、サービス、ビジネスモデルなどの各得意なところとコラボレーションすることになる。仲間探しは極めて重要だ。アルゴリズムの得意な企業、IT系のユーザインタフェースに長けた企業など、これまでのハードだけのモノづくり産業の外にいる企業を見つけなければならない。セミナー、コンファレンス、講師との会話などなど、コラボの手がかりにコストをかけることを理解できる上司を説得する「粘り」も必要となる。とにかく、若手が外に出て、IT系の人たちと話せる環境を自ら作り出す努力が必要であろう。

                                              (2015/4/28)

シリコンバレーは世界一差別のない所

(2015年3月 1日 20:24)

シリコンバレーでは男女差別がない。国籍による差別もない。米国は差別をなくすことに非常な努力をしてきた国だが、東海岸の企業や欧州の企業はまだそこまで行かない。しかし、シリコンバレーは全く平等なところだ。差別をしていては競争に負けるからだ。

 

これは、シリコンバレーの新聞、サンノゼマーキュリーニュース紙の記者を20年経験した後、シリコンバレーのコンサルタント会社、シリコンバレーリーダーシップグループ(SVL Group)で、コミュニケーションズ担当VPのスティーブ・ライト氏がその調査について発表したもの。シリコンバレーでハイテク企業を動かすCEOにアンケート調査した。それによると、シリコンバレーのハイテク企業で働くアメリカ人と、非アメリカ人の割合は、ほぼ半々、むしろ非アメリカ人の方が少し多い()。グーグルの創業者の一人、セルゲイ・ブリン氏はロシア出身、インテルの元社長アンドリュー・グローブ氏はハンガリーからの移民である。

 

図.jpg

図 シリコンバレーで働く外国人や女性は多い 出典:SVL Groupのデータを元に津田建二が作成

 

また、女性と男性の割合についても、女性の方がわずか多い。1999年から2005年までヒューレット・パッカード社の社長を勤めたのはカーリー・フィオリーナ氏だったし、ヤフーの現在社長はメリッサ・マイヤー氏だ。

 

シリコンバレー以外の企業でも、優秀な外国人や女性を確保しようとする企業は増えている。例えば欧州では、シーメンスから独立したインフィニオン・テクノロジーズ社のミュンヘン本社に働く外国人は多い。そこでは50数カ国からの人々が働いていると簡単に言う。英国のエディンバラ大学を訪問した時も、世界中から人々が留学し、何百人も研究者や教師として働いていると聞いた。アームやイマジネーションテクノロジーズでも数十カ国からきていると聞かされた。外国人と一緒に働くことは当たり前なのだ。

 

加えて、人を大事にする企業風土がインフィニオンにはあり、その究極は家族である。小学校入学前の子供を預かる保育所と幼稚園が本社敷地内にある。優秀な社員の子供がいずれインフィニオンに入って欲しいという経営判断からきているという。この「魅力ある人材育成」のために女性の管理職を増やす計画もある。現在、ワーカーを除くホワイトカラー社員の25%が女性で、その内の管理職は12%しかまだいない。これを2020年までに20%に増やそうとしている。そのために働く環境を充実させ、子供のケアが重要だとしている。

 

シリコンバレー以外の地域や国では、外国人や男女の差別をなくし、優秀ならば国籍や性別は無関係にしようと思う気持ちは強い。優秀な人が辞めると、その人と同等以上の力のある人を採用することが極めて難しいからだ。だから今は、簡単には首を切らない。現実に即戦力となる人を一人採用するためにかかるコストは300~400万円と言われている。リクルーティングのための仲介企業へのコストや、ヘッドハンティングなどのコストは実に高い。

 

だからこそ、優秀な人が辞めないように福利厚生に投資することは常識となっている。グーグルやアップルは24時間、社内のカフェテリアをオープンしており、しかも社員は全員無料だということは、有名な話だ。リニアテクノロジーのボブ・スワンソン会長は、私とのインタビューで「優秀な人間を見つけ、その場所を離れたくないというのであれば、本人の住んでいる場所をデザインセンターにする」と答えている。この方針は、ライバル会社でも採用するようになってきた。他のアナログ半導体メーカーでも同様なことを2年後に聞かされた。優秀な人間ならば国内外、男女を問わない。その理由をスワンソン氏は「優秀なアナログ技術者の採用は、いつも大変苦労する。絶えず大学と掛け合うことが多く、労力を費やすからだ」と述べている。同氏は、リーマンショックの時には一人もクビにしなかった、と胸を張って自慢する。

 

外国企業に引き換え、日本は本当に、差別の多い国だと思う。日本の企業や団体では外国人の比率は極めて低い。1%にも及ばない。学会や講演会に出席してもほとんどが日本人、それも男性ばかりである。女性は1割に満たない。ましてや外国人はほぼゼロである。国際化、グローバル化とは名ばかりだ。外国人が家を借りる場合、差別や偏見も多いと言われている。この現状に対して、企業や団体などの努力が見られない。外国人採用の条件が、ただ日本語を話せることになっているという現状は、能力開発にならない。

 

かつて、外国人を採用した日本企業では、外国人に翻訳や通訳をさせていた。その人の持つ能力を活かそうとは考えていなかった。このため、日本企業を止めていった外国人は多かった。

 

政府が女性の地位向上と称して「男女共同参画プロジェクト」を推進していても、誰も責任もってこのプロジェクトを管理、進行させていない。こう書くと、男女共同参画プロジェクト」の責任者はいる、と政府は言うだろう。では、社会で女性の責任ある地位が増えていなければ、命を賭けて責任をとっているか。指導者の責任とは、強いリーダーシップを与えられ、成功に導くための道筋を描き、実行したうえで、部下を一つの方向に導くことを指す。これができていなければ責任を果たしているとは言えない。もちろん、目標を達成していなければ、そのやり方が間違っていたわけだからリーダーを辞めなければならない。どう見ても責任者は不在だ。だから日本で女性や外国人の地位は上がらない。プロジェクトを推進する以上、責任を持って結果を出してほしい。

(2015/3/1)

アップルは電気自動車を作るのか

(2015年3月 1日 10:46)

アメリカでは、アップルがクルマを作るのではないか、といううわさで持ちきりだ。先週、Wall Street JournalBloombergなどのメディアがアップルいよいよクルマ(電気自動車EV)を作るという話を伝えている。本当だろうか。

 

アップルが正式に発表するまで、様々なブロガーやメディアは憶測を流すのはこれまでの常識だ。219日の日経産業新聞はWall Street Journalを引用し、「米アップルが電気自動車(EV)の開発を進めていることが欧米メディアの報道で明らかになった」という書き出しで記事を飾っている。しかも、記事中にはご丁寧に、プロジェクト名は「タイタン」、受託製造工場は「マグナ・ステイヤー」社という最もらしさまでついている。

 

グーグルが、自動運転のグーグルカーを設計・製造していることはすでに知られている。しかも自動運転車で世界をリードしているかのように報道されている。グーグルだけではない。

--続く


うれしい、理系の復権

(2015年2月24日 21:59)

216日の日本経済新聞朝刊の大学欄を見て、理系人口が再び増えていることにホッとした。理系の減少が長い間、続いてきており、これからの日本のモノづくりに先行きの不安を覚えていたからだ。ここ10年以上、理系の没落が叫ばれ、現実に理系が減り大学入試も簡単になったと言われていた。しかし、文科省が発表している学校調査を元に、工学部と理工学部の志願者の数を合計したグラフ(図1)によると2007~2009年を底に、増加傾向にある。

Fig1A.jpg

1 工学系・理工学系がリーマンショック後増加 出典:日本経済新聞、2015216日朝刊

 

かつて、理系離れが叫ばれたころは、経済が発展していた時期で、理系学生でさえ金融関係への就職が増加していた。理系・工学系の学生の就職先がモノづくり系から金融へのシフトは、実は金融商品としてのデリバティブと呼ばれる派生製品がもてはやされた頃と符合する。学生を求める金融業界は、数日後に派生商品の価値がどう高まるか、を予測する『ブラック・ショールズの式』と呼ばれる偏微分方程式を理解する必要があったからだ。偏微分方程式は、そもそも時間と共にあるパラメータが変化する様子を表す方程式であるからこそ、数学的な理解が欠かせない。理系学生はこういった訓練を受けてきているから、金融業界からの要請が出ていたのである。

 

しかし、ある程度これが定着しても理系離れは止まらなかった。それは正確なデータで議論するのではなく、雰囲気あるいは感覚といった勝手なうわさ話として伝わっただけにすぎなかった。2010年ころには、心理学や社会学などが人気を博していた。

 

しかし、実際の社会では、理系の方が給料は高く続くというデータも示されるようになった(図2)。文科系で就職してもその後の給料に理系・文系が反映されるとなると人々の事情は変わってくる。

Fig2b.jpg

2 理系の方が年収は高い 出典:日本経済新聞2010920日朝刊

 

理系か文系かの議論でよく言われることだが、理系の方がより実利的なデータやロジックで話を展開すると言われている。マレーシアの首相を長年務めたマハティール氏は医科大学出身で医師の資格を持つ。ドイツのメルケル首相は物理学の博士号を持っている。インドでは政治家や主導者はインド工科大学の卒業者が非常に多い。リーダーとしてのデータに基づく判断を行うのに理系出身者が向いているのかもしれない。現に、日産自動車のカルロス・ゴーン会長は元エンジニアだ。本田技研工業を創立した本田宗一郎氏は言うまでもなく理工系のエンジニアだった。

 

しかし、今の日本の政治の世界は別だ。理工系というだけで目の敵にされ、理工系をたたく傾向も強い。実際に理工系の優れた指導者は極めて少ない。一方で、理系は研究や技術開発だけやっていればよい、という風潮はないだろうか。だとすれば、優秀な理系経営者はつぶされてしまう恐れがある。一方の理工系のエンジニアはもっとお金を稼ぐことにも頭を使ってほしい。物理原理や法則を見つけたり、理解したりする能力は、大きな技術や経済・金融の流れを見出す能力にも通じる。残念ながら、一部の大手経営トップはテクノロジーの常識を持たなかったばかりに、重要な判断を誤り多くの人命を奪ったことを「FUKUSHIMAレポート」(日経BP)は語っている。

アップルが開発拠点を置く本当の狙い

(2014年12月13日 11:02)

数日前、アップルが「テクニカル・デベロップメント・センター」を横浜みなとみらいに設置するという発表が安倍首相を通じて行われた。即、いくつかのメディアが、ヘルスケアビジネスを日本で進めるため、という捉え方をしていたが、本当だろうか。

 

ヘルスケアビジネスは日本では非常に参入バリアが高い。特に二つのバリアがある。一つは厚労省、もう一つは医者の組織である。厚労省は医療機器としての認可、医者の組織も医師としての「認証」が必要だ。IT企業やメーカーがヘルスケアを製造し、体温や心拍数、血圧などのデータを測定したとしても、彼らがデータ値を信じなければそれでおしまいである。体温計で38度なら信じるが、スマホやヘルスケア端末で38度であるという保証はないからだ。彼らの保証がなければ、それはただのおもちゃにすぎないのである。アップルといえども、おもちゃを最もバリアの高い日本で売るだろうか。

 

アップルが本気でヘルスケア端末を販売するのなら、臨床試験の認可を最も早くもらえる米国でまず進めるべきだろう。米国では英国Toumaz社のヘルスケア端末を使った臨床結果がすでに出ており、そのメリットも述べられている。FDAの認可は臨床実験を始める前に取得しており、臨床試験はカリフォルニアの病院で行われた(参考資料1~3)

Alison Burdett.jpg

 図 Toumaz社CTOのAlison Burdett氏

筆者も3年前、ある人と組み、ヘルスケア用半導体チップを開発するベンチャーを設立すべきと、霞が関や官製ファンドなどを回ったが、誰も関心を示さなかった。日本ではヘルスケアをビジネスとして市場を作ることは極めて難しい。賛同し協力してくれそうな医師のグループにも彼は接触できたが、その先に進めなかった。半導体・エレクトロニクス産業がそのメリットに気づかなかったからだ。

 

アップルがおもちゃを売るのなら、アップルファンなりが購入するだろうから、それなりの量ははけるだろうが、大きな市場にはなりえない。ではアップルの狙いは何か。

 

ビジネスとして最も重要な日本の役割は、サプライチェーンである。日本は部品や機能的な材料を作るのが世界一うまい。セラミックコンデンサや抵抗などの受動部品は、今や0201と呼ばれるくらい、0.2mm台×0.1mm台という肉眼で見るのが難しいくらいの超小型の部品を村田製作所など開発し、次世代のスマートフォンに導入しようとしている。部品を小さく、回路基板面積を小さくできれば、その分バッテリを大きくできるため、電池が長持ちする。スマホに強く求められる重要な機能だ。

 

かつて、ノキアが世界一の携帯電話会社だった時、日本市場には2Gデジタル電話の独自方式のため参入が難しく、日本だけは市場を取れなかった。しかし、日本に法人をしっかりと残した。狙いは部品調達だった。

 

スマホは今や性能・機能を争う時代ではない。ユーザーエクスペリエンスと呼ばれる、「楽しいインターフェース」を競う時代である。アップルが日本に拠点、それも横浜を選んだのは、横浜がこれからの日本のシリコンバレーにあると見たのであろう。すでにモバイルプロセッサのトップメーカーARM社、ローム、スパンション(旧富士通セミコンダクターのマイコン・アナログ部隊)EDAツールのケイデンスなど、そうそうたるハイテク企業が集まってきている。ここにアップルが来れば、頭脳が売り物の設計開発拠点と十分になりうる。

 

そして、部品調達といえば研究開発とは関係ないと思われがちだが、実はそうではない。Time to market (T2M)が最大の競争力になってきた現在、開発段階から生産に使う部品を決め、その調達先を確保することが世界では行われている。研究開発に使った部品や材料と生産段階で使った部品などが違うといった、かつての日本のモノづくりでは、もはや世界に勝てない。研究開発から生産、量産、生産終了まで一気通貫のサプライチェーンを作ることが開発の大きな役目である。現実にこれをサポートするためのPLM(プロダクトライフサイクルマネジメント)ソフトウエアが入手できる時代になっている。フランスのダッソー社、米国のPTC社、ドイツのシーメンスソフトウエア社など、モノづくりを効率よく進めるためのPLMすなわちCMS(コンテンツマネジメントシステム)ソフトウエアが普及している。

 

アップルはスマホやタブレットの次機種に備え、ユニークな部品を求め、日本のテクノロジーを探しに学会や業界団体などに参加して来るだろう。部品や材料の情報収集にアンテナを張り巡らせる役割が横浜の開発拠点の最大の役割となる、と私は見る。

 

参考資料

1.    人に優しい未来を生み出すテクノロジー「第1回:ITテクノロジーで病気を防ぐ――ウェアラブル端末が実現する」

 2.    Toumazのヘルスケア半導体チップ、米国の病院で効果を実証(2013/06/05)、セミコンポータル

3. 津田建二「欧州ファブレス半導体産業の真実」、日刊工業新聞社刊 2010年

                                                                                 (2014/12/12

日本のスマホ普及率はクロアチア並み46%

(2014年11月30日 08:20)

日本の新聞では、時々「ポストスマホ」という言葉が散逸されるが、海外を取材している限り、スマートフォンの時代は少なくとも10年は続く。あらゆることがスマホをベースにして起きるからだ。20132月のMobile World Congress (MWC) の基調講演で、ファブレス半導体のトップ企業、クアルコム社の前CEOであったポール・ジェイコブズ氏(1)が「今やスマートフォンがコンピューティングのプラットフォームになったと言ってもいいだろう」と述べたが、その通りに時代は動いている。

 

Fig1.JPG

コンピューティングのプラットフォームになった、と彼が述べた理由はこうである。「2012年のスマホの出荷台数はパソコンの2倍になった。これからもますます伸びるだろう」。彼の言葉通り、その1年後、2013年のスマホの出荷台数はパソコンの3倍に達した。2014年もスマホの出荷数量は伸び続けており、パソコンの何倍になるのか楽しみだ。

 

日本しか見ていなければ、テクノロジーの大きな流れを見失ってしまう。1~2週間ほど前、グーグルが世界各国の人口当たりのスマホの普及率を発表した(2)。これによると日本のスマホ普及率は46%、とクロアチアと並んでいる。1位のシンガポールは85%2位の韓国は80%3位スウェーデン75%4位香港72%5位スペイン70%となっている。ちなみに英国は68%、米国は57%、ドイツ50%、フランス49%で、日本とクロアチアはフランスの次である。

 

fig2.png

図2 世界主要国の人口当たりのスマホ普及率 出典:Google Consumer Barometer

日本でスマホはまだ飽和していない。東京では電車内で見かけるスマホが80%以上普及しているように見えるが、地方へ行くと全く様子が違う。いわゆるガラケーさえ持っていない人も多い。ましてやスマホを持っている人は極めて少数派だ。地方ではこれからスマホが普及し始める。ポストスマホと喧伝すると、スマホのビジネス機会を見失い、ビジネス全体を失う恐れがあるから注意を要する。

 

歴史的に見ると、今のスマホは、かつてワープロからパソコンへ移行した1990年代を彷彿とさせる。通話を目的とする携帯電話がワープロに相当し、スマホは汎用のパソコンに匹敵する。アプリというソフトをダウンロードするとスマホに機能を追加できる。パソコンと同じブラウザを見ることができる。検索も容易だ。さらにカメラやビデオが付いており、テレビ電話も標準装備されており、音楽やビデオを再生できる。GPSで目的地に間違いなく到着できる。画面に沿って文字や写真が90度自動的に見やすい方向に回転してくれる。タッチパネル操作はiPhoneから始まった。集合写真を撮る場合のセルフタイマーのシャッタとしてスマホを使うシーンも一般的になった。

 

さらに、10年以上前から、ユビキタス時代とは言っていたものの、パソコンを持ち歩く時代は「いつでもどこでも」インターネットとつながっている訳ではなかった。Wi-Fiなどインターネットの環境があったとしても、必ずどこかに「座る」という行為をしなければ使えなかった。スマホやファブレット、タブレットなどは歩きながらでさえ操作している。カバンを片手に持っていても楽に使える。このようなコンピュータは今までなかった。今まさに、ユビキタス時代になったのである。

 

この先も、汎用リモコンとして使ったり、ヘルスケア端末をBluetooth SmartLow Energyでつなぐハブとなったりする。スマートハウスでは電力量のモニターや各部屋の電化製品のモニターとしても標準となるだろう。調光と制御機能を設けたスマート照明用のモニターとしてのアプリも入手可能だ。ポストスマホではなく、スマホをハブとしてヘルスケアやウェアラブル端末を周辺機器として使われるようになる。スマホがウェアラブル端末にとって代られるのではなく、ウェアラブルのハブになるのである。

 

だからこそ、例えば、スマホやウェアラブルに使うセンサの開発が世界各地で活発になっている。動きや重力を検出する加速度センサ、回転する状況を検出するジャイロセンサ、あらゆる圧力を検出する圧力センサ、地磁気をはじめ微弱な磁力を検出する磁気センサなど、スマホにはMEMSと呼ばれる半導体技術を駆使したセンサが盛りだくさん搭載されている。センサを中央にまとめるセンサハブという機能を実現する半導体チップも登場した。センサからの信号をユーザーエクスペリエンスに変換するアルゴリズムも続々開発されている。ここでもだが、半導体チップとソフトウエアが一緒になった、センサ技術が実用化のキモとなっている。

 

ただし、スマホ用の部品や半導体は世代ごとに代わる恐れがあり、今ビジネスを勝ち取っていても安穏としていられない。逆にまだスマホ部品市場に入れないサプライヤにはビジネスチャンスとなっている。諦めてはいけない。米国の中小ベンチャーは何とかしてスマホ市場に入り込むことを鵜の目鷹の目で狙っている。

                                                    (2014/11/30)

情報収集アンテナが高い台湾IT産業

(2014年11月 7日 23:44)

世界的な大きな流れ(メガトレンド)と人間の永遠の願いを元に、これからのIT業界を支える半導体産業について分析した本「メガトレンド 半導体2014-2023」の一部を台湾のIII(資訊工業策進会)傘下のMIC(産業情報研究所)が台湾語に翻訳・発行することになった。台湾のMICは市場調査を手掛けるシンクタンクである。

DSCN5243.JPG

 

ことのいきさつは、先日、発行元の日経BP社に台湾語に翻訳させて欲しいという問い合わせがあり、編纂した筆者の元に連絡がきた。早速、翻訳を希望している章の著者に問い合わせた。全ての著者が快く同意してくれたため、その旨をBP社に伝えた。今日、AETフォーラムのイベントでその著者の一人にお会いし、台湾は何と情報に対するアンテナの感度が高いことだろうかと彼は述べていた。

 

台湾のシンクタンクがこの本を評価してくれたことは非常にうれしかった。今や台湾は、ファウンドリでは世界第3位の半導体メーカーとなるTSMC、ファブレスでは世界12位のメディアテックといった、いまだ成長やまない半導体企業が君臨する地域だ。彼らは、世界中の半導体情報にアンテナを張り巡らせて、自分たちの役に立つと思う情報を手に入れる。

 

台湾企業のアンテナの高さには定評がある。米国、欧州、アジア、中国、そして日本、彼らのハイテクと組める相手や、市場のありそうな所には素早く反応する。半導体の景況を鋭くキャッチし、それを自社に組み込む。TSMCはまさに情報収集とキャッシュフローを見ながら投資を判断してきた。決して無茶な賭けではない。

 

かつてパソコンのプロセッサ情報には米国を、液晶技術には日本を常にウォッチしており、情報を集めた。インテルがマイクロプロセッサの新製品を発表した1ヵ月後には、プロセッサとメモリやインターフェース回路をつなぐノースブリッジやサウスブリッジと言われるチップセットを設計済ませた。これぞ、華人ネットワークと言われる強みである。液晶パネルの生産には日本を訪問した。基板からカラーフィルタ、偏光板、アモーファスシリコントランジスタ技術など液晶パネルに必要な技術を全て揃えた。

 

今日の台湾の実力は、情報収集能力の高さと貪欲な開発意欲によるところが大きい。これに対して、日本の半導体はどうか。情報収集の感度は鈍くないか。DRAMの失敗の原因の一つは、コンピュータのダウンサイジングという大きなメガトレンドを見てこなかったことにある。では、今後は大丈夫か。現在の大きなメガトレンドを見ているだろうか。「メガトレンド 半導体2014-2023」は、今後のメガトレンドを紹介したものである。この本を活用し、今後のビジネスに生かしてくれることを願う気持ちは発行直後と変わらない。

 

発行後1年経とうとしているが、細かい見通しに関して修正が必要な所が少しあるものの、大きなメガトレンドは変わらない。日本でもこの本、というより調査レポートを仕事に活かしてくれることを願う。この本について講演することが多くなったが、質疑応答を通して、同意いただけることが多い。

2014/11/08

ノーベル賞受賞の青色LEDの真骨頂はスマート照明

(2014年10月 8日 01:34)

1990年代に発明された青色LED(発光ダイオード)の発明者たち(赤崎勇名城大学終身教授と天野浩名古屋大学教授、中村修二カリフォルニア大学サンタバーバラ校教授)にノーベル物理学賞が決まった。彼らと同じ半導体産業に係わってきたものにとっては非常にうれしいニュースだ。

 

赤崎氏が名古屋大学教授であった時代に天野氏と共に、光が見える程度の青色LEDを発明した。その後、徳島の日亜化学工業にいた中村修二氏が効率を上げ実用的なレベルに引き上げた。日亜化学は蛍光塗料の会社から、一躍LEDの先端企業となった。応用物理学会をよく取材していた1980年代は、温和な顔立ちの赤崎先生のGaN講演をときどき見ていた。

 

青色LEDのインパクトは、照明に使えるレベルまで明るくなったことであり、また半導体ゆえに明るさや電流を瞬時に制御できる点だ。照明に使う光は白色(透明)だから、R(赤)、G(緑)、B(青)の3原色を混ぜることが基本だが、実際には青色のLEDに黄色い蛍光塗料を塗っている。これは定性的には、RGを混ぜると黄色になるから、それに青を加えたものと考えると理解しやすい。

 

青色LEDに緑の蛍光塗料を被せた白色LEDランプの消費電力は白熱灯の1/10、蛍光灯と比べても数分の一と小さく、省エネの決め手となる。明かりを全てLEDに変えたら、原子力発電所が何基分も不要になると言われるくらい、省エネ効果はある。

 

さらにこれまでの蛍光灯と比べて大きく違う点は、瞬時に照度を制御できるという点だ。蛍光灯は放電を利用しているため、一度点灯すればコンデンサなどでその電圧を維持し続けなければならないため明るさを調整できないという欠点があった。LEDは電圧を下げれば暗くなり瞬時に変化させることができる。現在の白色LED照明は、この調光機能をまだ十分に利用していない。

 

この調光機能を利用して、これからはスマート照明(Smart Lighting)がさまざまな所に活かされる時代になる。どのような応用があるか、紹介する。これはセンサを利用して明るさを調整できるのが最大の特長だ。例えば、大学の建物などで、人が建物に入ると照明がつくシステムを用いているところがある。しかし、暗い部屋へ足を踏み出すことに躊躇することがある。蛍光灯だと点灯するまでに1~2秒かかる。これに対して、スマート照明は部屋に入る前に明かりを灯してくれる。安心の度合いが全く違う。

 

さらにスマート照明は、安全性を高める効果もある。例えば、クルマを走らせていてトンネルに入る時に一瞬暗くて全く何も見えなくなることがある。もしそこに何か物体があれば間違いなく衝突してしまう。このような事故を防ぐため、トンネル側のセンサがクルマを検出したら、トンネル内を予め明るくしておくのだ。クルマから良く見えるようにしておくことができる。クルマがトンネルに入ったら照度を下げてもよい。

 

スマート照明は電力コストを今以上に下げることもできる。例えば、一つの部屋でも窓側と奥側では明るさが違う。外光が差し込む窓側のLEDの照度を下げ、奥側を明るくすると、省エネになる。明るさに応じてLEDの照度を変えるのである。この場合は照度センサをいくつか配置しておく必要がある。こういった応用では電力線通信(PLC)が役に立つ。もちろん、レストランやバー、ホテルなどでは食べ物のおいしさを表現する明かりや、ムードを出す光、落ち着いて話ができる明かり、など様々なシーンに応じて照度、色温度などを変えることができる。

 

かつて、固体照明のセミナーでLED照明は2015年をピークに2016年あたりから有機EL照明に代わる、という調査会社の予測グラフを見たが、残念ながらその通りにはまずならない。有機EL照明の生産技術はLEDのそれにまだ追いついていないからだ。白色LED技術は、6インチという大型のSiウェーハ上にGaNを結晶成長させることで更なる低コスト化が見えている。Si上に作るから8インチ化さえ可能である。もっと低価格にできるという意味だ。

 

スタンレー電気などが開発しているが、LED照明はクルマのヘッドランプにも使われる。クルマのヘッドランプには、通常は0.3mm×0.3mmの大きさしかないLEDチップを1mm×1mm角に大きくすると大電流を流せて明るくすることができる。クルマのヘッドランプにはこの大きなチップを使う。チップが大きければ、1枚のウェーハから採れるLEDチップの数は少ない。このため、ウェーハを大きくする意味がある。

 

このLEDランプをスマート照明技術と組み合わせると、ハイビームとロービームを自動的に切り替えることもできる。暗い田舎道をハイビームで走り、対向車線に車が見えるとロービームに変えるが、この操作を自動的に行う。たまにハイビームにしたままのクルマを見かけるが、眩しくて仕方がない。事故の元にもなる。これを自動化すると切り替えを忘れない。

 

DSCN7596.JPG

クルマのヘッドランプはLEDから、さらにレーザー照明にも使われ始めている。先日ドイツのミュンヘンにあるBMW博物館を訪れた時、最新の電気自動車「i3」への搭載を検討していると関係者は語った。LEDだとハイビームで400mまで明かりが到達するが、レーザー照明だと600m先まで見えるという。

 

DSCN7589.JPG

LEDの進歩はこの先もまだまだ続き、センサと組み合わせたスマート照明の時代はこれから始まる。半導体メーカーは、照度センサとLEDドライバ、周辺回路、マイコンなどで忙しくなる。LEDからレーザースキャニング照明も開発が進むだろう。LED、レーザー、いずれもGaNスマート照明時代はこれからが本番を迎える。

                                                                      (2014/10/08

NIWeekで受けた刺激は未来志向

(2014年8月 8日 14:13)

オースチンで開催されているNIWeek 2014では、やはり大きな刺激を受けた。NIWeekとは、ソフトウエアベースの測定器メーカーであるNational Instruments社が主催する3日間のイベントのこと。ここでは、測定器メーカーが単なる計測とセンサ、高精度アンプなどのアナログ技術を駆使する技術の総集大成を見せるのではなく、これからの将来に向けたITエレクトロニクスのトレンドを見せ、それに沿っていかに同社が成長していくかを示す場である。

 

宣伝臭さは少ない。自社がどのような製品を持ち、新製品を開発しているか、というような話は少なく、むしろ大きなメガトレンドを示している。まるで、IntelTIの開発者会議を超えたような新しい技術をわかりやすく、ビジュアルに見せ、ユーザー事例が豊富にある。

 

元々NIは、専用の測定器を作ってこなかったメーカーである。測定器は基本的に、検出や計測処理だけではなく、測定データを収集・デジタル処理・記録・表示する。この内、データの収集までを行うハードウエア部分をモジュール化し、残りのデジタル処理にパソコンを使ってデータを見せよう、という考えでオシロスコープをはじめとする計測器を作った。モジュールを差し込む筐体(シャーシ)を備え、モジュールのサイズやコネクタを標準化し、オシロスコープのモジュール、スペクトルアナライザのモジュール、任意波形発生器のモジュール、電源モジュールなどを揃えておけば、1台のパソコンが測定器に早変わりする。1990年前後の当初、こういった測定器を同社はVirtual Instrumentsと呼んだ。

 

このコンセプトを発展させて、設計ツールには使いやすいGUIを駆使したグラフィカルシステム設計ができるようなLabVIEW(ラボビュー)と呼ばれる設計ツールを発明した。シャーシのサイズを標準化し、PCI Expressバスを基本とするPXIシステムや、コンパクトサイズを特長とするCompact RIOシステムなどの基本プラットフォームを用意している。これらのシャーシに組み込むモジュールをアップグレードすれば、測定器そのものをアップグレードできる。つまり、拡張性が高く、フレキシビリティも高い。

 

こういった概念を推し進めてきた。今の時代がむしろ、NIの考えに合ってきた。やたらと「Software-Defined ほにゃらら」が叫ばれる時代である(ホテルカリフォルニアを引用したゲルシンガー氏の講演」を参照)7月に東京でSoftbankが主催した「Softbank World 2014」において、講演したVMwareCEOのパトリック・ゲルシンガー氏は講演の中で、「Software-Defined Layer」、「Software-Defined Enterprise」、「Software-Defined Datacenter」、「Software-Defined Future」、「Software-Defined System」など、「Software-Definedほにゃらら」を連発した。パットは元々インテルのCTOを務めた半導体男だ。

 

実は、何でもかんでもハードウエアでシステムを実現しようとする時代は終わりつつある。共通になるハードウエアを作り、その上に載せるソフトウエアを変えるだけで機能を追加したり、性能をアップグレードしたりするシステムに移りつつある。この方が、良いものを安く早く提供できるからだ。現実には、Software-Defined Radioはワイヤレス無線機のモデムでは実用化している。ネットワーク機器をもっとフレキシブルに安く運用するためにSoftware-Defined Networkも実現されつつある。

 

NIが推進してきたソフトウエアベースの測定器は、まさにSoftware-Defined Instrumentsなのだ。しかし、現実味のない「Software-Definedほにゃらら」概念だけでとどまりたくないため、実装するという意味を込めて同社は「Software-Designed Instruments」と呼んでいる。NIの持つ測定器は全て、このコンセプトを基本とする。

 

同社のシャーシはFPGA(フィールドプログラマブルゲートアレイ)を使って測定の仕様をプログラムで変えられるようになっている。データ収集系のハードウエアをユーザーが自由に変えられるフレキシブルな測定器だ。加えて、ビジュアル化(可視化)も重要な要素に加えている。LabVIEWは視覚に訴えるGUIでシステムを設計できるツールであるが、ビジュアル化をさらに進めていく。

 

NIが今後注目するのは、やはりIoTInternet of Things:全てのモノがインターネットにつながるという概念、またはつながったモノ)。刺激を受けたのは、IoTを民生用IoTと工業用IoTに分けたこと。民生用は、スマートフォンをハブとするウエアラブルやPAN/BAN(パーソナル/ボディ・エリアネットワーク)、ヘルスケアなど民生で利用するIoTと、工業向けに利用するワイヤレスセンサネットワークや、M2M(マシンツーマシン)、Industrial InternetSmarter Planetなど巨大なシステムに応用するIoTに分けた。工業用IoTは高信頼性、高セキュリティ、高品質などが要求されるため、民生用IoTとは別物と考えるべきだ、とNIのフェローであり製品マーケティング担当バイスプレジデントのMichael SantoriDSCN7082.JPGは筆者に語ってくれた。センサやシステムの大きさで区分け定義していた私は、IoTがもう実装される時期に来ていることを実感した。

 

IoTを実装したシステムを設計・検査する仕事を支援するのがこれからのNIのビジネス機会となる。常に成長を考えながら戦略を練る、と最後に語ったSantori氏の言葉は印象的だった。日本の企業が学ぶべき戦略の立て方がここにある。

2014/08/08

 

MEMSセンサ革命の時代に日本はなぜ参入しないのか

(2014年8月 4日 21:41)

スマートフォンにMEMSMicro Electro Mechanical System)センサが大量に使われているという事実が案外知られていない。MEMSとは、シリコンや水晶などの結晶やガラス材料などにエッチングやCVD(化学的気相成長)などの処理を施して、1mmにも満たないような大きさで極めて微細な機械的な構造を作る技術のことだ。

MEMSIC.jpg

 図 MEMSセンサチップ 出典:MEMSIC

MEMS技術はこれからのセンサ革命と呼ばれるセンサの量産技術を担うカギとなる。これまでのセンサは高コストの工業用の制御に使われてきた。しかし、その数量はわずかであった。スマホやタブレットが1年に数億~十数億個という大量の数を必要とするようになった。このため低コスト化が可能になった。これからは低価格化によって、工業用の制御にもふんだんに使われるようになる。Industrial Internetは、低価格のセンサのおかげで可能になる技術だ。すべてのIoTMEMSセンサが使われるようになるといっても過言ではない。だからセンサ革命の時代に入ったと言われる。

 

MEMS技術で作られた加速度センサのおかげで、スマホの画面を90度回転させると縦長の画面から横長の画面に変えることができる。重力加速度は常に垂直に地面に向かっているため、スマホを傾けると加速度の向きが変わることをMEMSセンサが検知する。

 

スマホの通話音が昔の電話よりもきれいに聞こえることにも気がつくだろう。これはMEMS技術で作られたマイクロフォンによる。MEMSマイクはやはり1~2mm角程度しかないため、1個だけではなく2~4個もスマホに入っている。通話する音をきれいに拾うために周囲の雑音を抑えるノイズキャンセル技術に使う。二つのマイクで周囲の音を拾い、一つの音の位相を180反転させると雑音同士が打ち消し合って弱められる。あるいは打ち消し合うための予測アルゴリズムを使うという技術もある。このようにして雑音を減らす。従来のコンデンサマイクは大きすぎて三つも四つも搭載できない。MEMSだからこそ、可能になる。

 

写真を撮る場合のカメラの手振れを補正するためのジャイロスコープ(回転を検出する)MEMS技術で作られる。シリコン技術で中を空洞にし、細くて薄いカンチレバーの構造を作る。加速度や角速度(回転)が動くとカンチレバーの先端がブラブラする。そのブラブラの程度を測ることで加速度や回転の度合いを知ることができる。これがMEMSセンサの基本原理だ。マイクロフォンは音によって薄い膜を振動させ、その容量変化を検出する。静電容量のわずかな変化で気圧を測ることもできる。

 

超先端の一部のスマホに入っているが、圧力センサはこれからスマホに大量に入り込むセンサだ。微妙な違いの気圧を測定することで、建物の1階にいるのか2階にいるのかの違いを検出する。アルプス電気に聞いたところ、30cmの高さを検出できるという。GPSと組み合わせれば、住所と建物を入力すれば、先端スマホを持っている人物が建物の何階にいるのかがわかるようになる。あるいは何階の部屋かを示す。

 

微妙な弱い圧力を測定できるMEMSセンサは、血圧や心拍数などの測定にも使える。つまり次世代のスマホやiPhone 6にはヘルスケア用のセンサが搭載されると言われているが、残念ながら日本のメーカーはスマホ市場には入り込めてない。新日本無線はMEMSマイクを昨年1億個スマホ用に出荷した、珍しい企業だ。しかし、大手の東芝やルネサスエレクトロニクスなどはMEMSを全く手掛けていない。

 

MEMSセンサは、厚さ500µm(0.5mm)程度のシリコンウェーハ(円板)の中をくり抜いて、薄いメンブレン(薄膜)を形成し、その上にホィートストンブリッジや静電容量ブリッジなどを作る。この薄いメンブレンによって、わずかな変化を感度よく検出したり、あるいは静電容量の変化を検出したりできる。半導体技術そのものだ。

 

こういったMEMS市場の先頭に立つ企業は、ドイツのボッシュ、次がフランス・イタリアの合弁半導体のSTマイクロエレクトロニクスが続く。トップ10社に入る日本の企業は、パナソニック、デンソー、キヤノンの3社だ。残念ながら日本の大手半導体企業は、MEMS技術を毛嫌いしてこの市場に入り込めていない。なぜ嫌がるのだろうか。

 

国内半導体メーカーは、工程が汚れることを嫌う。例えば深さ20µmのキャビティ(空洞)を空けるにはウェットエッチングを使うことが多いが、この工程は別のICウェーハを流す場合に汚れるとして嫌ってきた。このためにビジネスチャンスも失ってきたのである。ここに日本の半導体エンジニアの保守性とビジネスへの関心のなさがよく表れている。経営者もまた、エンジニアがみんなで反対すれば、それを押し切る指導力もビジネスセンスも持っていなかった。大手半導体メーカーが1社もこの市場に参入できなかったことは異常である。海外ではSTだけではなく、TI(テキサスインスツルメンツ)もプロジェクタ向けのMEMSディスプレイ(DLPプロジェクタと呼ばれている)で、アナログ・デバイセズは加速度センサで10年以上も実績がある。

 

問題は、生産ラインが汚れるからいやだという態度である。だったら一つの工場をMEMS専用に作り変えるとか、MEMSセンサを作るために何をすべきか、という態度で考えることではないだろうか。要は、新しいアイデアを否定するのではなく、成功させるためにはどうすればよいか、を考えることだ。ネガティブな理由をたくさん並べて、ビジネスチャンスを失うことのリスクの方がはるかに危険ではないか。残念ながら、エンジニアも経営層も成功するためには何をすべきか、というポジティブ思考でなかったことが今日の日本の惨状を生み出したのではないだろうか。

                             (2014/08/04