2021年1月

Sun Mon Tue Wed Thi Fri Sat
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31            
お気軽にお問合せください。
NEWS&CHIPS|国際技術ジャーナリスト、技術アナリスト、メディアコンサルタント津田建二の事業内容~技術・科学分野の取材・執筆(国際技術ジャーナリスト)

エレクトロニクス業界の最近のブログ記事

NIのプラットフォーム戦略

(2015年8月 5日 05:11)

米国にナショナルインスツルメンツ(National Instruments)という面白い会社がある。典型的なB2Bの企業なので、消費者にはほとんど知られていないが、IT/エレクトロニクス/モノづくり業界の人間なら知っている人は多いはず。会社分類では、計測器業界に属する。計測器は電子機器や機械がどう動いているかを調べる装置である。もちろん、昔からこの業界はある。むしろ、古い業界かもしれない。ところが、NIは、2009年のリーマンショックと2001年のITバブルを除くと全て右肩上がりのプラス成長でやってきた(1)

NIrevenue.jpg

 

1 NIの売り上げはほぼ右肩上がり 出典:National Instruments

 

こう書くと、社員を鞭打って働かせてきた会社を想像される方もいるかもしれない。ところが、この日本法人である日本NI「働きがいのある企業」の2015年版ランキングの従業員100~999人の範疇で、28位に入っている。つまり、働きやすく、かつ伸び続けている会社といえる。


その企業のフィロソフィーはしっかりしており、昔からの古い業界にいながら、新しいコンセプトを企業戦略に掲げている。これが今の時代にぴったり合っている。一言で言えば、プラットフォーム製品を追求する。かつての大量生産型モノづくりから少量多品種型へ時代は大きく変わった。少量多品種だからと言って、顧客一人一人に対応していれば利益は出ず、会社はつぶれてしまう。だから少量多品種時代には、「知恵」が必要になってくる。

 

この会社の知恵を紹介しよう。製品は基本となるプラットフォームである。1990年代だったか、最初にこの企業の製品を見た時、強い衝撃を受けた。それは、エンジニアなら誰でも使うオシロスコープやスペクトルアナライザをパソコンで実現したものだった。オシロやスペアナの画面はPCに表示し、測定部分をモジュールで作るという発想だった。モジュールを差し換えれば、オシロにもスペアナにも自由自在に変更できる。モジュールを格納する箱をシャーシと呼び、このシャーシに差し込めるモジュールを決まった形に統一した。当初はバーチャルインスツルメンツと呼んでいたが、実際に測定器は存在するのでバーチャルという呼び名はふさわしくなく、そのうち消えた。

 

その後、製品というモノを設計するためのソフトウエアでさえもLabVIEW(ラボビューと発音)と名付けたソフトウエアプラットフォームを用意した。これも時代に合わせてグラフィカルユーザーインターフェース(GUI)を持ち、モノの形が見えるようになっているため設計やテストの設定が親しみやすくできている。厄介なハードウエア記述言語は使わない。

 

現在は、LabVIEWと数種類の基本シャーシ; CompactRIOPXICompactDAQなどの箱があるという、非常にシンプルなプラットフォームである。これだけでほとんど全ての測定器をカバーする。しかも設計ツールのLabVIEWは測定だけではなく、設計も可能なため、モノづくり産業ではほぼ標準品にもなってきている。例えば、富士重工業のクルマ、スバルのハイブリッド車の開発を検証するためのツールとしてLabVIEWとシャーシを使って、独自のモーターHILSを動かすためのECU (電子制御ユニット)のテスト時間を1/20に短縮した、とスバルのエンジニアは述べている。

 

これらの少ない種類の製品をプラットフォームとして用い、ユーザーごとにソフトウエアやハードウエア(FPGAと呼ばれる半導体で電子回路を自由に変更)を変更するだけで、独自の電子機器や機械を設計・検証できる。もしもエンジニアが検証する専用の測定器を揃えるとなると、お金はいくらあっても足りない。

 

測定器を提供するNIは、新しい機能や規格が出てきても測定器をゼロから開発するのではなく、モジュールだけを開発すればよい。サプライヤ(NI)、メーカー(顧客)とも安く速くモノづくりができることになる。これぞ、ウィン-ウィンの関係ができる。

Dr.T.JPG

 

2 NIWeek 2015のキーノートスピーチで講演するドクターT

 

さらにこのビジネスでは、サプライヤとメーカーとの間に入り、ソフトウエアを開発する、ハードウエアを変更する、といった第三者のビジネスが生まれた。ハード、ソフト、サービス、いろいろな産業が協力し合う「エコシステム」が生まれているため、成長分野に照準を合わせれば、企業も成長できる。こういったやりかたこそが、今の時代に合ったテクノロジーである。このフィロソフィーを生み出した創業者兼CEOJames Truchard氏(図2)は、博士号を持つエンジニアで、「ドクターT」という愛称で呼ばれている。

 

プラットフォーム戦略という言葉だけが日本企業に見られるが、自分の得意な製品をプラットフォームに当てはまるように、ハードウエアとソフトウエアを考える「知恵」が企業に求められる。プラットフォーム戦略を採り入れるために自分の会社はどうすべきかをブレーンストーミングをやってみるとよいだろう。

 

NIWeek2015.JPG

3 NIWeek 2015の基調講演には3000人が参加する

 

実は今、NIが主催する年に一度の大きなイベントNIWeek 2015(3)に来ている。84日から始まるプレゼンテーションと展示会の前に、記者会見が開かれ、さわりが紹介された。LabVIEW新製品「LabVIEW 2015」や、産業用のIoTInternet of Things)に向けた検証システムが新製品として登場するようだ。

                                                            (2015/08/04

新国立競技場の紛糾に日本企業の弱さを見た

(2015年7月29日 23:35)

新国立競技場の建設費が膨らみ、2520億円にもなってしまうことで迷走していたが、当初の予定額は1300億円だった。もちろん、当初から高額であったが、さらに2倍近くにも膨れ上がったことで国民の非難の声が集中し、安倍晋三首相の政治判断で決着した。この迷走ぶりを見ていて、日本企業の利益率の悪さと結びつけて考えてしまった。

 

商品の原価を決めるのに、海外で成功している企業は、まず上限を決め、利益を確保し、その上で設計に入る。コストはできるだけ下げるため、設計段階からコストを強く意識したデザインを描く。性能や機能を最大限に発揮しながら、安く作ることを心掛けたデザインを行う。そのデザインに基づいて製造する場合も、コストをかけずに安く製造するための技術を開発する。これまで数回行われてきたオリンピックの新競技場が500~600億円でできたのに、なぜ日本はそれができないのか。そこにはコスト意識の低さが見える。

 

私がカバーしている半導体産業の場合、日本の企業はまず性能や機能を得られるかどうか、コストのことは考えずに開発する。要求される性能・機能を満足できるモノが得られたなら生産に移す訳だが、コストダウンは量産段階で行う。コストダウンのための技術開発は行わない。例えば、厚さ20ミクロン(50分の1mm)の金メッキの厚さを10ミクロンに薄くするとか、小手先のコストダウンしかしない。これでは外国企業とは競争できない。

 

かつてDRAMメモリで日本が世界のトップから落ち始めた頃、コストで外国企業に勝てなかった。当初、量産に成功したサムスンが低価格のDRAMを出してきたとき、トップの国内半導体メーカーの社長は、人件費の安い国は安物を作ってくるからねえ、とうそぶいていた。しかし、半導体ビジネスのコスト構造は、ザクッと言って製造装置コストが40~50%最も高く、次いでクリーンルームの維持費や純水製造、電力コストなど運用コストなどが来て、人件費はわずか5~8%しかなかった。つまり半導体製造は、人件費の安い国で作ろうが高い国で作ろうがさほど変わりはなかった。

 

そのすぐ後、人件費の高い米国のマイクロンがサムスン並みの安いDRAMを販売して初めて日本の半導体業界はびっくり仰天した。このことは黒船到来と同じで、マイクロンショックという言い方をしている。そして、マイクロンのフォトマスク数(ほぼ工程数と考えてよい)が日本の製造の2/3程度しかなかったことにさらに驚いた。多くの日本のエンジニアは「それほど少ないマスク数でDRAMを作るのは無理、正常に動作できないはず」と言っていた。

 

しかし、マイクロンは、マスク数を減らしただけでコストを削減した訳ではない。設計(デザイン)段階から安くしていたのである。一つは、できるだけ半導体チップを小さくするため、微細化技術を開発する。これは日本のメーカーも同じだ。次に、同じ寸法の線幅のルールを用いても、レイアウト上でできるだけメモリセルを詰め込むためのレイアウト技術を開発した。このために天才デザイナと呼ばれたエンジニアをインモス社から引き抜いた。そして3番目にマスク数を減らして工程を短時間で仕上げる。これらは全て低コストで作るための「技術」である。

 

マイクロンはなぜ安く作ることにこだわったか。当時、コンピュータのメガトレンドとして、ダウンサイジングが起きており、これからのコンピュータはメインフレームからオフコン、ミニコン、ワークステーション、最後にパソコンに降りてゆくに違いないと読んでいたからだ。彼らはパソコン時代の到来を開発に着手する前の1984年に「パソコン向けのDRAMしかやらない。メインフレーム向けは作らない」とインタビューした筆者に語った。そのためには「チップ面積が大きくなる冗長ビットや誤り訂正回路は集積しない。パソコンがソフトエラーを起こしフリーズしたら、電源を切り直せばよい。メインフレーム用途なら誤り訂正回路は必須だが」と述べた。

 

これに対して日本のDRAMメーカーは市場が次第に小さくなっていくメインフレーム向けの大きなチップを一生懸命に量産していた。コスト的にはとても太刀打ちできるものではない。半導体のコストはチップ面積にハイパー比例するからだ。しかし、気が付いたときはもうメインフレーム時代は終わり、パソコン時代が到来していた。日本の負けは決定的だった。

 

DRAMだけではない。マイクロプロセッサのインテルも低コスト技術の開発にはこだわった。まず20~30%の利益率を確保したうえで、可能な性能・機能を得られる設計(デザイン)に着手した。人手をかけない自動設計と、チップを小さくするための手設計の両方を駆使した。もちろん、製造工程を短縮しても性能に影響が出ない技術の開発に努力した。

 

日本企業はまず性能や機能を実現することを優先する。これを技術だと錯覚した。低コスト技術を開発することは全く眼中になかった。大手半導体メーカーを監督する経済産業省も安く作ることには全く興味を示さなかった。このため、米国のセマテックというコンソーシアムが「低コスト技術の開発」というテーマを持っていたのに対して、経産省主導のコンソーシアムは「最先端微細化技術の開発」しかテーマに挙げなかった。コスト競争力はテーマに入らなかったのである。これでは世界と勝てるはずがない。

 

今回の新国立競技場に関しても、設計者である建築家は「建設コストのことについては、なんとかなるだろう」と考えており、建設業者は高く買ってくれる公共事業を大歓迎した。日本の半導体業界と全く同じ低いコスト意識であった。オリンピック競技場の建設にはグローバル競争はないのかもしれないが、もし建設産業がグローバル競争にさらされるような時期がきたら、このままの意識では半導体と全く同じ結果になる。この轍を踏まないように、建築家はもっと高いコスト意識を持ち、安くても優れたデザインを追求し、建設業界は安くしかも信頼性の高い建物を作る技術を開発することが、これから世界と戦っていける道になる。

                              (2015/07/30

障がい者が健常者と同じように生活できる社会を目指す

(2015年7月29日 00:52)

ITやエレクトロニクス半導体テクノロジーを進化させれば、障がい者が健常者と同じように振る舞うことができるようになる。例えば、目の見えない視覚障がい者が健常者と同じように街に出て生活を楽しめる仕組みを、清水建設と日本IBMが共同で開発した。このナビゲーションシステムを使えば、音声が、目の不自由な方に道路情報や周辺にあるお店、ベンチ、曲がり角、自動トビラの有無などの情報を教えてくれる。

 

視覚障がい者がこれまで行ったことのない場所に安全に行けたり、街に着いたらウィンドウショッピングでお店を選び、好きな商品を選び購入したりするという、健常者なら当たり前のことを実現したい。これを手助けするのがIT/エレクトロニクスシステムだ。今回、両社が開発したシステムでは、スマホを持ち音声入力するための骨伝導イヤホンを使い、街を歩くと、イヤホンから周りの情景を知らせてくれる。「左側に桜の花が咲いています」、「コーナーに来ましたので右に進んでください」、などの指示を与えてくれる。また、こちらから「少し散歩したいのだけど」と問えば「近くに公園があります。右に進んでください」と答える。歩きすぎると、「ベンチがこの先10mの所にあります。休みませんか?」と聞いて来れば、「そうしましょう」と答えると「ベンチは左です」と返事をする。

 

このシステムは、清水建設技術研究所と日本アイ・ビー・エム東京基礎研究所が共同で開発した。日本IBMフェローの浅川智恵子氏(1)は、自ら視覚障がいを持ち、今回の開発に取り組み、実験にも積極的に参加した。

 

DSCN9259.JPG

1 日本IBMフェローの浅川智恵子氏

このシステムでは、スマートフォンをフルに利用する。まず音声で対話する。マイクは幅の細いカチューシャヘアバンドのような形で頭に装着する(2)。視覚障がい者は耳からの情報に対して神経を研ぎ澄ませているため、耳をふさぐことのないように骨伝導を利用して音声を拾う。マイクとスマホはBluetoothなどでつなぐ。コンピュータは大きく3種類用意する。一つは音声認識・対話のサーバ、もう一つは位置測定のためのサーバ、そして道路や周囲の空間情報データベースである。歩行者を検知するのは、戸外ではBluetooth LELow Energy)を使ったビーコン、屋内ではIMES(電波を出すだけのIndoor Messaging System)だ。それも多数必要だ。今回の実験ではビーコンを160台、IMES8台使っている。

 

DSCN9265.JPG

2 マイクはヘアバンドのような骨伝導タイプ

スマホをベースにしたのは、これまで専用機器を開発して成功した例があまりないからだという。スマホという汎用機にこだわり、音声対話のアプリをインストールさえすれば使える端末になるからだ。

 

位置測定サーバは、ビーコンからの電波の強弱を計算するために使う。屋外だとGPSが使えるが、屋内や地下街ではGPSからの電波を受けられないため、IMESやビーコンを衛星代わりに通り道のいろいろな場所に配置しておく。屋内のIMESは異なる位置情報を送信しており、どの位置のIMES信号なのかがわかればおおよその位置がわかる。さらに精度を上げるためにビーコンを利用する。いろいろな場所にあるビーコンからのBluetooth信号をスマホが受け、電波の強弱を検知、その強度情報をサーバに送り、サーバが位置を計算する。計算結果をスマホに送り、位置を特定する。サーバやデータベースをクラウドに置き、スマホは3G/4GネットワークやWi-Fiを通してインターネットとつなぐ。

 

通り道の情報をためておくのが空間情報データベースだ。ここには、道路や廊下の幅、緯度、経度、購買、路面/床状況、壁仕上げ、段差、階段、手すり、エレベータ、自動ドアなどの情報を溜めておく。屋外情報に関しては、国交省が721日に歩行者移動支援のデータをオープン化するためのフォーマットを定めたことを受け、出来るだけこのフォーマットを踏襲した。

 

国交省の定めは2020年の東京オリンピックを狙ったものだが、今回のシステムもそれを目指している。GPSよりももっと位置精度の高いGNSSGlobal Navigation Satellite System)の導入が2018年だと見越した計画だ。早ければ2018年くらいに実用化導入したいという。屋外のGNSSと屋内のビーコンなどの位置検出ツールをシームレスにつなぐことで、このシステムは狭い道路や廊下でも使えるようになる。

 

実はスマホを使った理由はほかにもある。スマホには加速度センサ、ジャイロセンサ、磁気センサ、圧力センサなどが入っているため、これらのセンサもフル活用しているという。例えば、まっすぐ歩きはじめると加速度を生じ、曲がるとジャイロセンサで回転運動を検出する。階段やスロープを上がると気圧が変わるため高さを検出できる。地磁気センサは方向がわかる。スマホはセンサの塊だからこそ、利用価値がある、とIBMは言う。GPSが使えない屋内ではビーコンに加え、スマホのセンサ情報をふんだんに取り入れ、歩行の履歴をしっかり残す。これにより屋内の位置精度は±1.5mを実現できた。

 

今回の実験では、視覚障がい者を対象にしたが、これからは高齢者や外国人にも言語対応を行うことで使えるようにして行く。さらに、災害時の誘導もスムースにいくだろうと期待する。こういった未来像を描く一方で短期的には、まずは病院などの医療施設内や物販施設、公共施設での利用を想定している。例えば病院内で、外来患者のいる場所がすぐに把握できると待ち時間は少なくなるとしている。

 

Contactlens.jpg

3 Googleの提案したウェアラブルコンタクトレンズ。真ん中のディスプレイ画素をCMOSイメージセンサに替えると映像を取り込むことができ、目が見えるようになる可能性がある 出典:Cymbet

 

そのための半導体エレクトロニクス技術は極めて重要な役割を持つ。例えば、目が見えないが視神経は正常な人なら、半導体チップとエネルギーハーベスティングシステムをコンタクトレンズに形成し、視神経とつなげられれば目が見えるようになる可能性がある(3)。今の医学では直せない視覚障がいを半導体エレクトロニクスが直すのである。こんな素晴らしいことはない。

                              (2015/07/29)

ボブ・ディランが歌う、急変するIT産業

(2015年7月27日 23:19)

IT/エレクトロニクス/半導体産業はこれだから面白い。変化は目まぐるしく速い。つい数ヵ月前まで、世界の勝ち組と崇められたクアルコム社が社員の15%にあたる4700名のリストラ案を準備するようになった。ついこの前まで、中国のスマホ市場でトップに君臨していたサムスンが今年の第1四半期には4位に転落した。世界市場ではまだ1位だが、転げ落ちる時間は速い。かつてのノキアがそうだった。ノキアの前はモトローラがそうだった。パソコンのインテルは、パソコンの衰退がはっきりした今、中国のベースバンドチップとモバイル用のプロセッサメーカーのスプレッドトラム社の株式の20%を取得、ワイヤレス充電技術の開発など、さまざまな手を打っている。

 

テクノロジーとしても、半年前まで、世界中の半導体メーカーがこぞって、16/14nmプロセスにはFinFETテクノロジーを採用し、当たり前のように性能向上を期待していた。今、事態は変わりつつある。歩留まりがどうにも悪く、生産性が上がらなくなっている。代わって、22nm FD-SOIという別の技術が注目を集め、グローバルファウンドリーズ社は両方の技術を持ち始めた。

 

端末デバイスでは、タブレットが飽和してきた。何が代わって出てくるのか。それも見えつつある。最も有力なデバイスはウェアラブルやヘルスケアなどの端末ではない。やはりスマホである。それも画面が5~6インチのファブレット(Phablet)と呼ばれる大きさだ。ビデオを見るときはタブレットのように画面が大きければ大きいほど良いが、メールやSNS、通話になると最適な画面サイズが必要になる。これを提供するのがファブレットである。スウェーデンのエリクソン社が発行したEricsson Mobility Reportでは、消費者にアンケート調査した結果、用途によって画面サイズに最適値があることを報告している(1)

 

18161432068_d1efe0a16a_k.jpg

1 スマホの画面サイズには最適値がある 出典:Ericsson Mobility Report

 

サービスの一つ、広告の世界では、パソコンからスマートフォンを使った広告の世界がのしてきた。スマホは便利なことに、ブラウザを立ち上げ、URLを入力するといった面倒な操作をすることなく、アプリで望むページに即座にアクセスできる。即座に個人を特定することもできるため、個人を狙ったビジネスを展開しやすい。もちろんそれだけに個人の秘密を絶対に守るセキュアな環境がマストである。

 

さまざまな分野の方たちが同じコンセプトを違う言葉で語っている好例がIoT(インターネットオブシングス)だ。IoT端末を使って、工場の生産性を上げようと考える人たちは、それを「インダストリー4.0」と呼び、IoT端末を使って変動の少ない電力システムを作ろうと考える人たちは「スマートグリッド」と呼ぶ。IoT端末から集まった大量のデータから想像もしなかった新しい発見を支援するツールを、ビッグデータを呼ぶ。インターネットというサイバーの世界と、センサで実世界(フィジカルなスペース)のデータを取りそれを実世界の活かすサイバーフィジカルシステムも同じ概念だ。製造業はモノを作って販売する、というビジネスモデルしかできなかったが、IoT端末を使って壊れないジェットエンジンや風力タービンを製造して従量制の課金を直接の顧客の上のレイヤーの企業から行うインダストリアルインターネットは、ビジネスモデルを変えるためのIoTシステムである。米国ではもうIIoT(工業用のIoT)という言い方が定着しつつある。

 

この世界は変化が速く、少し前に学んだことがすぐに陳腐化する。全く目が離せない。このような世界で、日本の大企業がすばやく勝負できるだろうか。できないなら、出来るようにするためにどうすればよいかを考え実行しなければならない。

 

15年ほど前、台湾のエイサーが社員数1万人を超えたのにもかかわらず、ディシジョンが速かった。そこで来日したスタン・シー会長にその理由を尋ねた。答えは、会社を完全に分社化し、各部門長に責任と予算権限を与え、会長はビジネスに口を出さない、ことであった。会長として、報告を聞くだけに徹しているのである。残念ながら日本の経営者は会長、相談役になってもすぐに口を出す。これでは社員にとって誰が社長なのかわからない。社員のモチベーションはぐっと下がる。大企業ほどこの傾向が強いから、企業は活性化しない。

 

モバイルの世界は、あまりにも速い。つい1年前は注目を集めた、中国の小米科技はもう伸びが鈍化している。3Gモバイルで一世を風靡したクアルコムがリストラを計画しているとは、1年前には想像もつかなかった。

 

ビジネスがあまりにも急速に進むモバイルの世界を、50年以上も前にボブ・ディランが歌で表現している。The times they are a-changin'(日本語では『時代は変わる』)という歌がそれだ。歌詞の最後の部分がまさに、時代の変化の速さを物語っている。

 

The slow one now will later be fast いま遅くてもいずれ速くなる

As the present now will later be past 今が旬でもいずれ過去になってしまうから

The order is rapidly fadin' 順番は急速に色あせ、意味がなくなる

And the first one now will later be last 今がトップの者はいずれビリになろう

For the times they are a-changin' だって時代が変わりつつあるから

 

つたない訳詞で申し訳ないが、意味をつかんでいただければありがたい。

                              (2015/07/27)

電気飛行機が英仏海峡を飛んだ

(2015年7月12日 21:03)

フランス時間で先週の金曜日710日に英仏ドーバー海峡を電気モータの飛行機が飛び渡った、というニュースが入ってきた。電気自動車ならぬ電気飛行機である。リチウムイオン電池と強力なモータでプロペラを回す。化石燃料を使わない環境に優しい飛行機となる。欧州のエアバス社が電気飛行機で海峡を渡った。

 

英国ケント州のリッド(Lydd)空港を飛び立ったエアバス社の電気飛行機は、フランスのカレー(Calais)空港に着陸した。全長20フィート(約6m)、重量1300ポンド(585kg)の二人乗りの機体だという。エアバス社の飛行に対して、パイロットの安全を優先するため、救援チームのヘリコプターが帆走飛行し、救援高速船が海峡を航行した。

 

今やさまざまな飛行機会社が電気飛行機の開発競争に入っているという。エアバス社は、今回二人乗りの電気飛行機というよりは、ハイブリッド飛行機を開発し、もっと多くの人間を運べるようにしたいと語っているとAP通信は報じた。

 

これまでは、航空機で使われた技術が自動車に使われてきた。飛行機という巨大な機体を動かすために電気モータを多数活用してきた。例えば、パワーステアリングのように地上を走行する場合のハンドルは、クルマに使われるようになってきた。X-by-wireと呼ばれる技術はまさに飛行機技術がクルマに入ってきたようなもの。例えば、ステアリング-バイ-ワイヤーは、元々飛行機技術からきている。操縦桿で飛行機の向きを変える時に操縦桿からモータ駆動で補助翼を動かす。この技術はまもなくクルマに入ってくるだろう。

 

モータとエンジンの両方を使うハイブリッドエンジンは、飛行機ではなくクルマが先行した。このクルマの技術が飛行機に入っていくのである。飛行機技術がクルマに入るのではなく、クルマ技術が飛行機技術に入るという、技術の反転現象はすでに起きている。エレクトロニクスの技術は軍から民への展開だった。コンピュータや半導体はもともと軍事産業から始まった。スマホで使われている無線技術もインターネットも軍事技術の民生応用だ。技術は軍が先で民が転用するという歴史だった。

 

しかし、今は軍でも反転現象が起きている。高集積半導体技術やブラウザ技術、液晶ディスプレイ技術、LED照明、リチウムイオン電池などは民生先行で立ち上がった。今やこういった技術は民から軍へと応用されている。

 

自動車でもガソリンエンジンからハイブリッドカーへ進んだように、内燃エンジンの飛行機もハイブリッド飛行機へと今後15年のうちに実用化が始まるとエアバスは見ている。民から軍への応用展開は、むしろ軍事予算が減った平和な時代を象徴しているのかもしれない。

                                (2015/07/12)

モトローラから独立、クルマ市場で稼ぐオンセミ

(2015年7月10日 22:30)

オン・セミコンダクター(ON Semiconductor)という半導体メーカーを知っているだろうか。1999年にモトローラ社から独立し、ディスクリート半導体やアナログIC、標準製品など、地味な半導体を扱ってきた企業だ。その後、さまざまな小さな企業や大企業の1事業部を買収して成長してきた。2014年の売上額は32億ドル程度になった。

 

一方、同じモトローラから独立したフリースケールセミコンダクターはマイクロプロセッサや、マイクロコントローラなど先端的な半導体製品を扱ってきた。IBMPowerPCアーキテクチャをサポートしてきた。その後はARMアーキテクチャにも対応した。マイクロプロセッサのニュースは、改良点が明確でわかりやすい。このためメディアはこぞってフリースケールを採り上げてきた。しかし、2013年まで赤字続きで、2014年はようやく黒字に転換した。財務はあまり良くない。日本企業とよく似ており、リストラなどの改革のスピードが遅く、世界の流れについて行けなかった。NXPセミコンダクターからの買収提案を受け入れ、まもなくNXPの傘下に入る。

 

では親会社のモトローラはどうなったか。通信機メーカーのモトローラの設立は1922年とかなり古い。かつては通信用半導体にも力を入れており、世界の半導体市場のトップに立ったこともある名門だ。モトローラは、世界で最も小さな携帯電話機「マイクロTAC」を製造した企業でもある。携帯電話市場もかつてはモトローラが支配した。その後、ノキアに抜かれ、そのノキアはサムスンに抜かれ、モトローラの携帯電話部門モトローラ・モビリティはグーグルに買収された。昨年、グーグル傘下のモトローラ・モビリティはレノボに売却された。通信の内、通信基地局向け製品部門はモトローラ・ソリューションとなり、現在はこの部門だけの会社になった。

 

オンセミは、地味ながら着実に進化してきた企業である。ディスクリートトランジスタやダイオード、標準アナログ、ロジックなど標準品を扱う組織として分離独立した。今でもモトローラの株式所有比率は10%程度あるとオンセミのコーポレートマーケティングオートモーティブ戦略副社長のランス・ウイリアム氏はいう。標準品だけでは競争力が付かないため、独立した1年後にチェリーセミコンダクターを買収、PMICや自動車用ASSPなどを手に入れた。2006年にはLSIロジックの旧富士通セミコンダクターの工場を買収した。2008年にはAMI、カタリストセミコンダクターを次々買収、2010年にはカリフォルニアマイクロデバイス、2011年にはサイプレスのイメージセンサ事業部門と、三洋半導体を買収した。昨年、CCDイメージセンサのトゥルーセンス、CMOSセンサのアプティナを買収した。

 

モトローラは日本企業とよく似ており、かつては世界の頂点を極めた製品が多かったが、リストラを完了させるまでの時間が長くスピード競争になっているモバイルビジネスには向かない大企業病に陥っていた。世界の勝ち組企業とは全く違っていた。フリースケールのマイクロプロセッサは携帯電話のベースバンドに使われたが、モトローラが携帯で失敗するとフリースケールも引きずられた。

 

オンセミは地味なのに、車載用のCMOSイメージセンサ市場では世界のトップだという。車載用の半導体ICは、必ずクルマメーカーの認定が必要で、それなしでは納入できない。CMOSイメージセンサでは、世界トップのソニーはクルマ用のCMOSセンサの認定を取得していないらしい。もっぱらスマートフォン向けのセンサしか作っていない。

 

クルマ向けにこれから、CMOSセンサは多数入るようになる。主にクルマの安全性を高めるためである。例えば、前方に障害物を見つけると自動的にブレーキがかかる仕組みがあるが、その場合は1台あるいは2台のCMOSカメラで障害物との距離を測り、クルマの速度に応じてブレーキをかけている。駐車する時には、まるでクルマの上から見ているかのように画像や映像を合成するアラウンドビューモニター機能を使うが、この機能では左右前方に4台のカメラをそれぞれに配置し、撮影した映像を4枚合わせる。また、米国ではバックモニター用のカメラは設置を義務付けられるようになった。

DSCN6473.JPG

 

図 バックミラーを液晶パネルに置き換え、後ろをもっと広角に見る

 

さらには、バックミラーの鏡を液晶に替えて、後方の景色を全て死角なく見えるようにしようという動きもある。昨年の「人とクルマのテクノロジー展」で日産自動車がデモ展示をしていた()。ドアミラーは停止したクルマの周囲を歩く場合には邪魔になる。ここにも1cm角程度の大きさしかない、小さなCMOSカメラセンサを設置し、横と後方の様子を前方のディスプレイで見るようにするテクノロジーも提案されている。

 

クルマのテクノロジーと言えば、自動運転を想起する人が多いだろうが、自動運転は免許の有無、自動車学校の解体、警察の仕組みの変換、法律の変更など社会全体への影響が極めて大きいため、そう簡単には市街地走行が許可されない。2020年どころか、2030~2040年の頃を念頭に置いたプロジェクトとなる。社会的な問題が解決されない限りは、本格的な実用化にはならない。しかしながら、駐車場での自動走行などの実用化だと、このような社会問題にまで踏み込まなくても済む。こういった応用は早い時期に実現されるだろう。

 

クルマのテクノロジーが進化すると、2030年ころのCMOSセンサの数は1台当たり20個を超えているかもしれない。オンセミは2020年に1台当たり19個とカウントしている。

                                (2015/07/10

IoTで日本が勝つためには

(2015年7月 3日 23:12)

IoTInternet of Things)もM2Mmachine to machine)も、ビッグデータもワイヤレスセンサネットワークも、パーバシブコンピューティングも、サイバーフィジカルシステムもユビキタスコンピューティング、さらにはインダストリアルインターネット、インダストリ4.0など、どれもこれも同じようなコンセプトを違う文化の人たちが違う言葉で表現している。数年前からIoTを追いかけてきて、2年ほど前にこの考えにたどり着いたが、うれしいことに、今日のセミナーで講師の一人が述べておられたことに我が意を得たりと思った。

 

株式会社エーイーティー主催AETワークショップ「Internet of Everythingへと更なる進化を遂げるIoTに参加した。午前中の講演は聴けなかったが、午後からの講演を聴き、最後のパネルディスカッションのモデレータを仰せつかった。午後からの講演では、ワイヤレスセンサネットワークのセンサ端末(IoT端末)に使う電源をエネルギーハーベスティング技術で使おうとする研究や、センサを実際の建物の崩壊でどのようなデータが得られるかなどの研究があった。IoTは現実になりつつある。外国ではすでにセンサネットワークを商用化している所もある。

Fig.jpg

 

IoTM2Mなど上に述べた概念はどれもセンサとネットワークによって、いろいろな物理空間の情報を簡単にコンピュータで扱えるようになるのである。だから、センサ端末、無数のセンサが結びつくネットワークトポロジー、3G/LTEなどのモバイルネットワークへデータを飛ばすゲートウェイ、クラウドインターネット、集められる巨大なビッグデータ、処理するコンピュータ、データを蓄積するストレージ、そしてビッグデータを解析してユーザーの除く目的や要求に応じたサービスを提供する。こういった一連のシステム全体をIoTともいう。

 

ただし、こういったシステムで工場の生産性を上げることを目的に使われるのであればインダストリ4.0となる。製造業のビジネスモデルを単なる製品販売だけではなく、稼働のアベイラビリティを高め信頼性を高めると提供する機械を使うたびに料金を得る従量制のビジネスへの転換を図るのなら、インダストリアルインターネットになる。いずれも場合もIoTシステムを基本とする。

 

全体の大きなシステムを作り、サービス提供まで含めるならば、1社で全てを実行することが難しい。だったら、だれかと組まなくてはならない。パートナーシップの構築が欠かせない。2社間からさらに多くのパートナーを組み入れるエコシステムへ発展させることができれば日本は間違いなく勝ち組になれる。

 

これまで日本は、IoT端末やセンサ端末など、目に見えるハードウエアを作ることは得意だった。しかし、全体のシステムを構築し、その元でサービスを提供することは得意ではないようだ。アップル社のすごい点は、このシステムをiPhoneというハードウエアを作り、App Storeを開き、通信オペレータが構築したモバイルネットワークを利用してサービスを提供したことである。グーグルやアマゾンと共にOTTOver-the-top)と呼ばれるゆえんだ。OTTのトップとは、NTTドコモやKDDI、ソフトバンクなどの通信オペレータだ。OTTは文字通りその上を行く。

 

日本がIoTで本当に勝ち組になるためには、ハードウエアだけを作るのではなく、モバイルネットワーク上のサービスも含めたシステムデザインも描くことが決め手となる。全体のデザインを描き、その中のハードウエア端末を設計製造するとなると、これまでの御用聞きと下請けの部品メーカーから脱却することができる。自社でできなければ、誰かと組み、システムデザインを明確にする。

 

そのためには自社の強みを売りにしたうえでのシステムデザインに必要な相手を見つけ、組むことになる。当然、海外に目を向け一緒に仕事することになる。

 

それを成功させるために必要なことは何か。相手を上から目線で見ないように相手の仕事を敬う姿勢・態度が重要なのである。相手はシステムデザインが得意で、自分はハードウエア作りが得意であることに自信を持つと同時に相手の得意なところを敬う態度・気持ちを持つことが重要だ。その相手は、日本人の男ではないかもしれない。外国企業の女性CEOかもしれない。

 

このようなパートナーシップからエコシステムへと発展させるためには、日本のビジネスマンは意識を変える必要がある。男女差別、国籍差別、言語差別、年齢差別、あらゆる差別を撤廃し、それぞれを敬う「訓練」が必要かもしれない。日本の女性側でさえ、「女だからお茶を入れなきゃならない」と考える古い意識を変えてもらわなければならない。日本がIoTで世界に勝つためには、まず差別意識を徹底して撤廃することがまず第一歩だろう。もちろん、日本の良いシステムは崩さないようにすることが前提だが。

 

こういった意識を変えるためには、おそらく小学校からの教育システムまで変えていく必要があろう。みんな平等でいて、算数の得意な人、国語の得意な人、運動の得意な人、絵の得意な人、音楽の得意な人、それぞれ自分の得意を褒め合い、各自の能力を引き出す(Educe)のである。これが教育(Education)の本質だから。今回のパネルディスカッションでは、教育問題にまで言及することになった。全て日本がIoTで勝つための方策である。

                                              (2015/07/03)

新材料を短時間で開発する手法

(2015年7月 2日 00:14)

新しい材料を開発する場合には、何千、何万もの考えられうる組み合わせがある。例えば、元素ABCを混ぜ合わせて何か新材料を生み出す時には、「A33%B34%C33%」のように元素をそれぞれ調合して100%になるようにする。この割合を「A100%B0%C0%」から「A0%B100%C0%」、「A0%B0%C100%」までの間に連続的に変えるような組成の材料を作りそれぞれの特性を測れば、どの組み合わせがベストな特性を引き出すのかを知ることができる。こういった組成を変えて、新しい材料を見つける手法を「コンビナトリアル」と呼ぶ。

 

新材料と言っても化学の周期律表にある材料を組み合わせて生み出すことしかできない。全く新しい元素を見出すことはもはや難しくなっている。元素一つ一つ調合比を変えて実験するにはとても時間がかかってしまう。二つの元素同士でさえ、A0%B100%からA100%B0%まで組成を変えてそれぞれの組成の材料を作製し、特性を測定するという面倒な作業が欠かせない。

 

コンビナトリアル手法は、組成の組み合わせを連続的に、しかも自動的に変えていくことができる。この手法を使い、新しい材料を開発する、あるいはこの手法をサービス提供するビジネスが登場する、などコンビナトリアル技術が同じ島国の英国と日本で活発になっている。

 

英国のサザンプトン(Southampton)大学をスピンオフして設立されたイリカ(Ilika Technologies)社、日本の独立行政法人物質・材料研究機構をスピンオフして設立されたコメット社がそれぞれ手法は微妙に違うが、コンビナトリアル技術を実用化している。

 

実は、「急ぎ足の英国出張記(参考資料1)で述べた、ロンドン-サザンプトン間の日帰り出張はイリカ社を訪問して、コンビナトリアル手法と、新材料による新しいリチウムイオン電池の話を聞くためだった。イリカ社のビジネスモデルは技術のライセンスであり、それによる製品の共同開発である。いかにも英国らしく、研究開発をビジネスにする。

 

日本のコメット社は、コンビナトリアル法を使って材料を開発するための製造装置販売と、コンビナトリアル技術のコンサルティングサービスをビジネスとしている。製造装置は販売するだけだが、コンサルティングサービスは、顧客の目的に応じて、組成を連続的に変えた材料を作製し、その特性を測り、結晶構造の解明と、考察も加えてレポートを提供する。顧客の望む特性の材料ができるだけではなく、全く異なる特性を有する組成の材料を開発することもあるという。同社のCTO(最高技術責任者)である知京豊裕氏は、高誘電率の材料を探していたが、同じ元素を使いながら、それぞれの組成によっては耐熱性の高い材料も出来てしまったことがあると語る。このことはコンビナトリアル手法のメリットでもある。

 

イリカ社の技術はE-ガンとKセルと呼ばれるるつぼを使う蒸着法で、最大6つの元素を組み合わせる実験ができるとしている。元素に電子線を照射し加熱溶融させ、それを基板に向けで飛ばす。この技術で、リチウムイオン電池の正極、負極、固体電解質の薄膜をそれぞれ蒸着で形成する。これまでの正極用LiCoO2(コバルト酸リチウム)、負極用のリン酸リチウム(Li3PO4)とは違う材料だと同社CEOGraeme Purdy氏(図1)は述べる。明言は避けたが、同じリチウム、コバルト、酸素でもそれらの比率が違うのであろう。

_DSC4366a.jpg

図1 英国イリカ社の経営陣 右端がCEOのGraeme Purdy氏 出典:Ilika 

固体電解質のリチウムイオン電池なら、発火事故や爆発事故の心配はない。しかし、薄膜リチウムイオン電池の開発は難しく、唯一製品化している企業は米国のシンベット(Cymbet)社だけだった。ところが、そのシンベットでさえ、電話取材を申し込んでいたが、ずるずる言い訳がましく時期を延期に次ぐ延期を余儀なくされ、結局インタビューは実現しないまま、突然、製品生産を中止する、当社はもうリチウムイオン電池から撤退し、別のビジネスを行う、と言われた。

 

イリカの方法だと、固体電解質のリチウムイオン電池は半導体プロセスで製造できるだけではなく、薄膜成長時の基板温度が300℃と低いため、ガラスでもポリマーでも使えると言う。イリカによれば、シンベットが使ってきたスパッタリング法は、基板温度が700℃と高く下地に形成したLiCoO2膜が崩れたまま、再結晶するという。このため積層に積むことができずエネルギー密度を高めることができない。これに対してイリカの電子蒸着法は数層のバッテリをスタックできるため、電圧あるいは電流を高めることができる。

 

イリカはトヨタ自動車とも共同開発しているが、その心は電気自動車やプラグインハイブリッドの大容量バッテリではなく、クルマのドアガラスの開閉やワイパー、LED点滅など車内の各部分にある、軽いECU(電子制御ユニット)を動かすための安全なバッテリを欲しかった(参考資料2)。これまでのECUは全てワイヤーハーネスを通してセンサ、アクチュエータ、鉛蓄電池などと結んでいる。このワイヤーハーネスの総重量は数十kgにも及ぶため、各ECUを独立させワイヤーハーネスを削減しクルマを軽くしたい。そのための小型バッテリである。

 

コメット社の方法は、コンビナトリアル手法そのものを提供するため、スパッタリング法で形成する。この方法だと、例えば最初からHfO2Y2O3Al2O3などを混ぜ合わせ、最適な次世代CMOSトランジスタのゲート絶縁膜の最適な材料を求めるのに使い勝手が良いからだ。スパッタガンと試料基板との間にシャッターを設け、シャッターをずらしながら、堆積させる膜厚を調整していく。全て完全自動で行う。

 

イリカ、コメット共に、開発部門は全員Ph.D(博士号)を持つ研究開発会社である。単純作業をできるだけ減らすため、試料を装置内に入れた後は、薄膜形成過程やデータ取得などの工程は完全に自動化している。イリカでは若い博士号を持つ研究者が楽しく、生き生きと開発している姿が印象的だった。

                                                 (2015/07/01)

 

参考資料

1.    急ぎ足の英国出張記2015/04/01

2.    連載:カーエレクトロニクスの進化と未来、第70回「車内ワイヤレスネットワークによりハーネス除去を目指す英国ベンチャー」2015/04/20

 

「電源規制レベルVIに気を付けて」

(2015年6月28日 12:40)

電源規制レベルVIをクリヤしなければ米国に電子機器を輸出できなくなる。「日本企業がそうならないようにお手伝いしたい」。こう述べるのは、デジタル電源を引っ提げて日本でのビジネスを進める米CUI社。日本とは25年の付き合いだと言う同社CEOMatt McKenzie氏は、ローパワーからハイパワーまでの製品ポートフォリオを揃え、日本市場をさらに強固にするためにこのほど来日した(1)

 

DSCN9083.JPG

1 CUICEOMatt McKenzie() 左は同社Global Marketing担当のJeff Schnabel氏

 

デジタル電源とは、デジタルで電源電圧を自在に制御できる電源、という意味で今は使われることが多い。当初は、電源回路の中をデジタルで制御する方式をデジタル電源と言っていた。電源回路は元々、出力の電圧変動をアナログ的にPWM(パルス幅変調)でパワートランジスタの入力を調整することで安定な直流電圧を供給する。パルス幅変調をアナログではなく、さらに非常に細かいパルスの数で幅を調整する方式が、かつてはデジタル電源と呼ばれた。その細かいパルスを作り出すのがDSP(デジタルシグナルプロセッサ)と呼ばれる、積和演算専門のマイクロプロセッサである。DSPが得意なテキサスインスツルメンツ(TI)は、DSPの新しい応用として、デジタル電源を提案した。

 

今や、マイコンやプロセッサを使ってデジタルコマンドで供給電圧を調整する電源をデジタル電源(Digital power supply)と呼ぶことが圧倒的に多い。電圧を供給するシステムの消費電力を削減するためである。ここではDSPを使うことなくコストを削減できる。電源への要求デジタルのコマンドはPMBusと呼ばれるプロトコルを利用して通信する。

 

CUI社は、電源機能をコンパクトにモジュールにまとめるモジュールや電源と電源用部品のメーカー。AC-DC電源に加え、DC-DCコンバータも手掛ける。一般の家庭やビルなどで使われている100Vの交流(AC)を12V5V24Vなどの直流電圧に変換する電源では1Wから、12kWといったサーバーラック用の電源までカバーする。DC-DCコンバータだと0.25Wの小型から600Wまで手掛ける。LEDの電源となるLEDドライバや、IGBTパワートランジスタを駆動するIGBTドライバもある。

 

狙う市場は、通信インフラ系やネットワーク機器、データセンターのサーバー、医療機器、工業機器など。製品ポートフォリオを広げることができたのは、高出力電源を設計・製造していたカナダのテクトロール(Tectrol)社を買収したことによる。もともとCUIは電力の低い電源を得意としてきた。この買収によって、製品ポートフォリオが広がっただけではなく、標準品の変更によるセミカスタム電源やカスタム電源に対する高出力製品にも対応できるようになった。

 

例えば、AC-DC電源として最も出力の高い3kW1Uラック対応の電源「PSE-3000-48」ファミリを先日リリースしている。標準的な1Uラックに収まる40.64mm×101.6mm×355.6mmの大きさで33.48W/立方インチの電力密度を持つ。直流48V出力だが、42V~55Vの範囲で調整できる。通信インフラやサーバー、ネットワーク機器などエネルギー削減の要求が強い分野に向く。50%負荷における変換効率は94%と高いからだ。この製品こそ、テクトロール社のリソースを使って開発したもの。1U19インチの電源シェルフには4基の電源を搭載し12kWの電源を並列運用できる。デジタル制御用の標準バス、PMBusバスを内蔵している。

 

デジタル電源は、長い間、なかなか広まらなかった。電源内のフィードバック回路にまでデジタルで制御することのメリットを見いだせなかったからだ。

 

デジタル電源の普及と、セカンドソースの確保を目的として、CUI社は村田製作所、スウェーデンのEricsson Power Modules社と一緒にAMPArchitects of Modern Power)グループと呼ぶコンソーシアムを設立した。通信インフラやネットワーク機器、データセンター向けにデジタル電源を普及させるための標準仕様を設定する。さらに互いにセカンドソースとなり、いろいろな顧客やコントローラ企業と次世代電源について共同で開発、議論する。

 

インテルのマイクロプロセッサやFPGA(フィールドプログラマブルゲートアレイ)など最も微細な製造技術を使う半導体チップでは、1V程度の電源電圧で10A程度もの電流を流すことが多くなってきた。このため、チップのそばに電源を置かなければノイズなどの問題で正常動作が難しい。電源電圧を下げなければ消費電力を許容範囲に収めることができないためだ。そこでPOLPoint of Load)電源も登場したが、CUI社はデジタルPOL電源も持っている。最近の製品例ではAMPグループが定めたteraAMP標準に準拠した90A1V出力のPOLデジタル電源(DC-DCコンバータ)がある(2)。出力電圧は0.6V~1.8Vで変えることもできる。モジュールの大きさはわずか、50.8mm×19.11mm×9.47mmで、4個並列接続して360Aまで拡張できる。

Fig2.jpg

 

2 1V90A出力のPOL電源モジュール 出典:CUI

 

米国ポートランド市郊外にある本社を拠点とするCUI社は、日本の顧客にレベルVI規制に気を付けて、と注意を喚起する。これは米国のDoE(エネルギー省)が定める消費電力に関する規制であり、これまではレベルV規制までだったが、2016年の2月からは一段と厳しいレベルVIに準拠した電源を持つ電子機器しか、米国へ輸出できなくなる。これは出力電圧に応じて規制される消費電力を規定した仕様である。動作時の平均電力効率と無負荷での最大消費電力を、出力電力に応じて決めている。McKenzie氏は、米国に輸出する日本の機器メーカーがレベルVIをクリヤできるように支援したいと述べている。

                                                                (2015/06/28

非技術系の「デジタル」にも違和感

(2015年6月17日 20:27)

先日、「テクノロジー」という言葉に違和感を覚えるという記事(参考資料1)を書いた。早速、元エンジニアのトモダチから「同感、私はデジタルという言葉にも違和感を覚えます」、という意見をいただいた。この声にも全く同感である。事実、1980年から2014年まで、アナログICの出荷数量の方がデジタルICのそれよりも増え続けてきた。その数量の成長率もアナログの方が大きい。デジタル時代なのになぜアナログICの方が成長は速いのだろうか。考察してみよう。

 

デジタルエレクトロニクスという言葉を最初に聞いたのは、米McGraw-Hill(マグロウヒル)社が発行していたElectronics誌の記事を日経エレクトロニクスが翻訳した、1977~78年頃だった。その記事では、これからのエレクトロニクス技術はアナログからデジタルに変わっていく、というトーンだった。

 

1971年にはIntel4ビットのマイクロプロセッサ4004を発明し、Texas Instruments1トンジスタ/セル方式のDRAMを発明し、デジタルLSI時代は幕を開けた。それ以前は、TTL標準ロジックがデジタルICの数を圧倒していた。当初は、コンピュータエンジニアから「おもちゃ」と見られていた4004だが、8ビットの8080時代へと突入した。統計的な数字を持っていないが、70年代はデジタルICが増え続けたのだろう。特にDRAMメモリは容量が少なすぎて話にならないほどだったから、1Kビットから4K16K64K256Kと増加の一途をたどり、数量も月産1000万個、2000万個と増えていた。

 

80年代に入り、16ビットの80868028680386、そして32ビットの80486へと進化した。16ビットプロセッサ全盛の1980年代半ばに、デジタル時代には必ず人とのインターフェースに使われるアナログ半導体が求められるはず、との信念を持った男ボブ・スワンソン氏がLinear Technologyを創業した。アナログ専業メーカーのMaxim IntegratedIntersilなども設立された。Analog DevicesTIもアナログが強かった。

 

80年代後半になると、コンピュータエンジニアは半導体マイクロプロセッサを本気で考えるようになった。ゲートアレイなどのロジックでCPUボードを作るよりもIntel486Pentiumを購入する方が安くて高性能が得られるようになったからだ。

 

ところが、デジタルのマイクロプロセッサ技術の進展と共にアナログ半導体の数は増えていった。しかも、1980年から2014年に至るまで出荷された全IC総数の内、アナログ半導体の占める割合はずっと一貫して増え続けてきたのである()1980年には出荷されたICの総数の68%がデジタルで、アナログは32%だったが、2014年には47%がデジタルで53%がアナログ半導体と逆転した。今後の成長率でさえ、アナログICとマイクロコンピュータ(MCU/MPU)、MOSロジック、メモリという分類で見ると、アナログ半導体の成長率が最も高い年率平均8.9%2013~2018年を成長していくという予測がある。

AnalogvsDigital.jpg

 図 アナログICの比率は増え続けている 出典:IC Insights

 

これを物語るのは、時代はデジタルに向かってきているものの、使われる半導体はアナログの方が増加率は高い、ということだ。入力の光センサや圧力センサとそのインターフェース回路はアナログ、A-D変換器(コンバータ)もアナログ、D-A変換器もアナログ、そして出力の液晶ディスプレイドライバ、モータの駆動インバータ、無線のトランシーバ、など人間を含む外界とのインターフェースは全てアナログICで出来ている。

 

さらに2000年代に入り登場したスマートフォンはアナログだらけである。タッチパネルのタッチセンサやジェスチャーセンサ、画面を90度回転させると画像も90度する加速度センサ、電子コンパスに使う磁気センサ、カメラの手ぶれ防止に使うジャイロセンサなど、こういったユーザーエクスペリエンスと言われる機能は全てアナログ回路である。そして今、時代はユーザーエクスペリエンスの時代に入るとアナログICの需要はますます増える。人間の指タッチや、ポーズ、ジェスチャーなど楽しいしぐさを入力デバイスとして表現するようになってきたからだ。音声のマイクロフォンは音を電気に変換するセンサである。音声入力もますます増えていく。スマホやタブレット、IoT端末のユーザーインタフェースは全てアナログ主体の回路となる。だから、アナログICがこれからも増えていくのである。

 

スマホやタブレットのデジタル回路部分はコンピュータと同じ構造だが、その入出力部分はまさにアナログである。そして電源用IC(最近ではパワーマネジメントICと呼ぶ)もアナログであり、約4Vのリチウムイオン電池から、1.2V3.3V5V7Vなど10種類程度のDC電源を作り出さなければならない。もちろん、据え置き型の機器は100Vの交流から、やはりさまざまな種類の直流電源を作り出す。

 

要は、マイクロプロセッサとメモリ(ROM/RAM、ストレージ)、周辺の専用ロジック回路などはデジタルだが、それらは制御と演算を受け持つ。演算処理が終わると出力するためのアナログ回路が欠かせない。

 

以上のように、「デジタル機器」にはアナログICが山のように増え続けている。だからこそ、デジタル時代と言われることにエンジニアは違和感を覚える。おそらく、非技術系の使うデジタルとは、機器の中身はどうでもよく、表示が数字だとデジタルで、表示が色の濃淡やグレイスケールだとアナログと言っているだけではないだろうか。これからのIoT端末の中身はデジタルICよりもアナログICの方がずっと多くなる。

 

ただ、エンジニアが注意しなければならないのは、非技術系のデジタルこそがユーザーエクスペリエンスであるという認識ではないだろうか。厳密にはやはりアナログ回路なのだが、コンピュータや専用ロジックのようなデジタル技術一辺倒ではなく、非技術系の言う「デジタル」、すなわち技術系の言う「アナログ技術」に商品価値が移っていることに気が付くべきかもしれない。

参考資料

1.    非技術系の「テクノロジー」に違和感(2015/05/07

                                                   (2015/06/17)