2022年7月

Sun Mon Tue Wed Thi Fri Sat
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31            
お気軽にお問合せください。
NEWS&CHIPS|国際技術ジャーナリスト、技術アナリスト、メディアコンサルタント津田建二の事業内容~技術・科学分野の取材・執筆(国際技術ジャーナリスト)
   

エンジニアの海外転職に待ったをかける韓国

(2022年2月 6日 10:56)

韓国政府が半導体技術者の海外企業への転職や技術供与を阻止する法案を提出することになった。25日に日本経済新聞が報じた。半導体世界トップのサムスン電子などの技術者を中国企業がスカウトする事例が増えていることに対処するものだ。核心技術を海外に流出させた場合、刑罰を「懲役3年以上」に厳罰化するなどの技術流出防止策を打ち出す。

 

80年代後半は日本のエンジニアがサムスンに

かつて、サムスンは日本の半導体企業に対して、技術者を土日のアルバイトとして韓国に連れてきたことがある。1980年代後半の日本の半導体が世界一になった頃の話しだ。これは有名な逸話だが、当時安月給の半導体技術者に対して土日のアルバイト代で月に40万円を払っていたといわれる。実際、大手電機メーカーからそのまま韓国に住み着いて、コンサルティング業という肩書を持つ元エンジニアもいた。

その前にサムスンはこれからの成長産業としてDRAMメモリを開発・製造することを決めていたため、日本の半導体メーカー(事実上、大手総合電機メーカー)たちを11件回り、ライセンス供与してくれるように依頼していた。しかし半導体部門を持つ総合電機メーカーは全てサムスンの依頼を断った。このため、サムスンは仕方なくマイクロンからDRAMのライセンスを受けた。後になってみれば結局、これが奏功した。

DRAMというメモリはシリコンウェーハから出発する製造プロセスがその歩留まりを大きく左右するため、ライセンスを受けても実際に細かいノウハウを知ることはできない。そこで、日本の半導体技術者に目を付け、土日のアルバイトで教えを請うことになった。

 

細かい製造ノウハウは日本から応用はマイクロンから

サムスンのしたたかな所は、細かい製造ノウハウは日本から受け、将来花開く応用分野はマイクロンから得たことに尽きる。というのは、マイクロンはDRAMに積極的に力を入れると宣言した1984年からコンピュータのダウンサイジングのメガトレンドをしっかりと見据え、将来はメインフレームからパソコンが主流になるという流れを捉えていたからだ。マイクロンは米国の大手半導体メーカーが日本勢に押されてDRAM事業を止めるのに対して、84年にこれから強化すると言い出したのだ。このため当時は実力がまだ弱く、DRAMを手掛けていたモステック社やインモス社から優秀なエンジニアを採用するなどしてDRAMを強化し出したばかりだった。余談だが、アイダホ州に本社を構えるマイクロンが2種類のチップを世に出したという逸話も有名だ。2種類とは半導体チップとポテトチップのこと。

 

MicronHiroshima2.JPG

1 マイクロンの東広島工場

 

これに対して日本の半導体はコンピュータのダウンサイジングの動きを知らずに相変わらず高価なメインフレーム向けのDRAMを作り続けて90年代に突入した。マイクロンはインモスの天才設計エンジニアの知恵を活用、パソコン向けにいかに低コストで作るかに集中してきた。銀行や基幹産業などに使われるメインフレームコンピュータ向けのDRAMには誤り訂正や冗長回路などを集積したりしていたため、チップ面積は大きくなっていた。これに対してパソコンはちょっとしたフリーズのようなソフトエラーに対しては再起動するだけで済むため、DRAMチップには余計な回路を搭載しない方針を、筆者が取材した84年にすでに打ち出していた。

1995年にサムスン、その後マイクロンが256MビットDRAMをリリースした時になって初めて日本の半導体メーカーはこんな安い価格では作れない、とショックを受けた。サムスンが発表した時は、「人件費が安いからね。DRAMでわが社は安売り競争しない」と国内半導体メーカーのトップは平然と筆者に語った。DRAMの製造コストに占める人件費はあるコンサルティングによると、5~8%しかない。つまりDRAM製造には人件費はほとんど関係しないのだ。だからマイクロンが発表した安いDRAM製品に日本の半導体企業はびっくり仰天した。黒船到来とかマイクロンショックとか言われた。逆に言えば半導体経営者がDRAM原価について無知だったといえる。その後の日本半導体の凋落とサムスンの快進撃は周知のとおりである。

今回、韓国が中国企業を意識して技術者をつなぎとめる政策を打ち出したことに対して、日本政府はこれまで何の手立ても打ってこなかった。民間企業の施策に補助金を出すことをしてこなかったツケが日本の半導体を弱くした一因でもある。今回、韓国政府は、核心技術を持つ企業に対して、技術者をつなぎとめるための補助金制度も創設するとして、高度な技術者に支払う特別手当の内3割を政府が負担するという。日本政府は、コンソーシアムを作れば補助金を出したが、これは官僚の天下り先としても機能した。

   

期待できる日本の中堅半導体企業たち、日本電産に注目

(2022年1月27日 08:36)

126日の日本電産のニュースリリースを見て驚いた。2018年、ルネサスエレクトロニクスからソニーセミコンダクタソリューションズの役員となりヘッドハンティングされた大村隆司氏が、日本電産の役員として迎えられたのである。同氏は、201891日付けでソニーへ入社した(参考資料1)。役員待遇でソニーの半導体部門を任されたのにもかかわらず、メディアの前にはほとんど姿を見せることがなくなっていた。新聞報道にも専門メディアにも全く登場していない。2019年暮れに、あるメディアの広告企画でソニー側のCMOSセンサとMaximのビデオインターフェイスICの相乗効果によるコラボの取材でソニー側の代表として顔を見せたのが最後だった。

DSCN9980.JPG

1 ルネサス時代の大村隆司氏 出典:筆者撮影


一方、日本電産はモータ技術で成長してきた企業であり、半導体事業に参入すると見られてきている。このためか、大村氏の日本電産での肩書は、「執行役員 副最高技術責任者、半導体開発担当」となっている。これから日本電産が半導体に進出する上で、重要人物として採用したのであろう。大きな市場として期待される自動車には無数のモータが使われており、その駆動回路に半導体ICが欠かせない。同社が半導体を求めることは十分納得できる。


今、日本の中堅半導体が面白い

日本電産はじめ、実は今、中堅半導体が面白い。半導体事業を強化しているからだ。旧セイコーグループをルーツとしていたエイブリック(参考資料2)は、最近テレビコマーシャルで「感じる半導体」をテーマとして流している。そのエイブリックをミネベアミツミが2年前に買収した。ミニチュアのボールベアリングを生産しているミネベアは、最初にミツミの半導体工場を買収、半導体事業に再参入した。そして2020年エイブリックを買収し、本格的に半導体事業を強化し始めている。

ミネベアは、かつて一度半導体に進出したことがあった。1980年代後半にNMBセミコンダクターという名称で千葉県館山にファウンドリ工場を建設、ファウンドリ事業を進めたが、ビジネスはうまくいかなかった。ファウンドリビジネスの本質を捉えていなかったからだ。ファウンドリビジネスを成功させるためには、設計部門を充実させることがカギだが(台湾のTSMCは設計部門が充実しているから顧客は製造を頼みやすい)、ここをおろそかにした。日本で他にもファウンドリと称する事業を行っている半導体企業はあるが、外部の客を取ってきた経験がほとんどない。

もう一つ注目する中堅半導体は、日清紡グループだ。えっ、と驚かれる読者がいるだろうが、実は日清紡はもはやかつての紡績・繊維の会社ではない。無線通信、マイクロデバイス、ブレーキ事業、精密機器事業、化学品事業、繊維事業、不動産事業という7つの主力事業を持つホールディングカンパニーであり、会社名は日清紡ホールディングス株式会社だ。そしてそのホームページによると主力事業は、「無線・通信/マイクロデバイス」となっている。事業の主体は日清紡マイクロデバイスである。

日清紡マイクロデバイスは、半導体メーカーの新日本無線とリコー電子デバイスを統合させた会社である。無線通信に強い新日本無線と、パワーマネジメントや電源ICに強いリコー電子デバイスという今後とも成長が期待される分野に強い企業となった。無線通信は、4G5Gなどのセルラー通信をはじめ、Wi-FiBluetooth、独自無線など今後とも期待が大きな分野である。また、どのような集積回路でも電源がなければ動作しない。半導体ICが将来どのような方向に行こうが、電源は必ず必要となる。しかもチップに応じて、1.2V3.3V5V12Vなどさまざまな電圧の電源が求められている。必ず成長する。


日本電産の半導体、モータ駆動に期待

ここで面白いのは日本電産がどのような半導体をビジネスとするのかだ。モータが強いことからブラシレスモータやサーボモータ、さまざまな種類のモータに応じて駆動回路が異なる。そのための半導体ICが必要になる。パワートランジスタにドライバIC、さらにそれを駆動し、制御するマイコンなどがセットで使う。こういった製品を扱うのか、あるいはファウンドリという製造専門のビジネスを行うのか、極めて興味がある。

重要なことは、日本の総合電機はもはや当てにならないことだ。「半導体は外から買って来ればいい」という態度に終始しており、半導体で他社との製品の差別化をしないからだ。なぜアマゾンやグーグル、アップルが自社チップを開発してきたのか全く理解していないのである。

ただし、成長するためには、顧客を海外に求めたり(かつての国内半導体メーカーは自社内の総合電機が主な顧客)、自動車産業(日本のモノづくり産業の頂点)と一緒に開発したりする必要がある。となると海外の人材を採用することになる。この円安で売り上げを伸ばそうとするなら、日本に工場を持ち、海外に積極的に売りに行くことが最も期待できる。そのことで海外市場の伸びと共に日本のメーカーも一緒に伸びていくことができる。そのためには海外企業とパートナー(顧客であろうとサプライヤーであろうと同じ)を組み、売り上げを計上できる仕組みを作ることが最も重要なことになる。もちろん、日本の強い自動車産業と組む手も重要である。

 

参考資料

1.       「ルネサス、大丈夫か」、News & Chips、(2018/07/27

2.       「エイブリックしてる?」、News & Chips、(2018/09/01


 

   

2022年はモノづくり向けメタバースから始まる

(2022年1月15日 13:43)

 

メタバース(超宇宙)という言葉をクアルコム社のCEOであるChristiano Amon(クリスチアーノ・アモン)氏(図1)がCES 2022で使ったということで、CESの話題に上ったようだ。メタバースとは、メタ(超)と宇宙を意味するユニバースとの合成語である。超宇宙よりも超現実という訳の方が適切かもしれない。つい最近まで、VR/ARMRXRと表現していたが、今はメタバースに置き換わったようだ。

 

Amon4.jpg

1 QualcommChristiano Amon CEO 出典:同社決算報告ビデオから

 

メタバースとは、VR/AR(仮想現実/拡張現実)を使って映像を見ながら没入感を増すという分野である。メタバースは、フェイスブックの社名をメタと変えたことから、宇宙を意味するユニバースとミックスしてメタバースという言葉が使われるようになった。メタバースがこれからのITの世界の一つの分野を形成するかもしれないが、今のところはゲームに現実の映像とグラフィックスを混ぜるとか、Zoomのようなビデオ会議の中でグラフィックスのアバターを登場させるといった応用しか新聞では報道されていない。

しかし、メタバースの最大の応用となる可能性は、産業分野であろう。グラフィックスチップメーカーのNvidiaのジェンスン・ファン(Jen-sun Huang)氏や、アプリケーションプロセッサメーカーのQualcommのアモンCEO(図1)が述べているように、工業用の設計、例えばクルマの新車設計に大いに役に立つ。

今や仏ダッソー・システムズ社や米PTC社、独シーメンスソフトウエア社などが販売している3D-CADは、ずいぶん普及してきた。しかも開発すべき新製品のイメージを視覚的に捉えやすい。それだけではない。自動車のように多国籍企業の多い産業では、世界各地に工場を持っているが、世界中の設計者が設計データを同時にリアルタイムで共有したり、設計作業に参加したりすることはできなかった。もちろん、各地のユーザーの要求が異なることもあるだろう。しかし細かい仕様の要求ではなく基本的な設計を世界で共有できたら、世界の重要工場でほぼ同時に製品を立ち上げることが可能になる。T2MTime-to market)が極めて短くなる。

関東圏と関西圏のエンジニアが同時に設計作業を進めるだけではなく、ミュンヘンやパリ、ロンドン、デトロイトのエンジニアが同時にリアルタイムで設計作業を行うことができるのである。まさに世界中がつながった世界の設計データをリアルタイムで世界中の工場が共有できるので、クルマの作り方の大変革になる。

VR/ARのチップはGPUと呼ばれるグラフィックスチップで描画すると同時に、世界中の接続にはレイテンシの少ない5G技術が必要となる。それを制御するCPUArmRISC-Vか、今後の半導体産業の勢力図は大いに変わる可能性がある。それでもメモリだけは必ず必要である。キオクシアのNANDフラッシュだけではなく、日本でもDRAM開発が行われればもっと強くなる。DRAMのようなメモリはコンピュータシステムだけではなく、AIやメタバースでも求められるからだ。

しかもコンピュータシステムの応用は、拡大している。昔は「コンピュータ」を意味していたが、今は、コンピュータと同じ仕組みを使ったエレクトロニクス製品(業界ではこれを組み込みシステム:Embedded systemsと呼んでいる)があふれているからだ。卑近な例では、冷蔵庫や電気釜、自動車、スマホなどから電気(電池含む)を使う装置やシステムは全てコンピュータ制御に代わっている。それだけ半導体市場が拡大し続けているのだ。

メタバースはデジタルツインを実現する重要なツール、とジェンスン・ファン氏は位置付けており、デジタルツインによりデジタルトランスフォーメーション(DX)を実現し生産効率を圧倒的に上げることができる。また、旧フェイスブックのマーク・ザッカーバーグ(Mark ZuckerbergCEOは、「メタバースの最大の特長はテレポーティング機能だ」と述べている(図2)。テレポーティングとは瞬時に移動できるという意味である。アバターや3D-CADを同時に共有しながら作業することはまさにテレポーティングを表している。

 

Zuckerberg.jpg

2 MetaMark Zuckerberg CEO 出典:仏Viva Technology主催のオンラインビデオから

 

 加えて、QualcommのアモンCEOは、最新のArm V9アーキテクチャのCPUコアとGPUコア、5G通信回路などを集積し4nmプロセスで実現したSnapdragon 8の発表時には、メタバースを実現するためのチップでもあると述べている。Qualcommも都市設計事例を3D-CADで描き、世界のパートナーをアバターで表現、一緒に都市設計する様子を見せている。

 メタバースの本命は、モノづくりの設計であろう。世界中、日本中のエンジニアが同時に設計できる環境は、これまでのモノづくりの環境を一変させる可能性を秘めている。こういった応用では、メタバースが恐らくバズワードでは終わらないだろう。

   

多用しすぎる、なんたらトランスフォーメーション

(2022年1月 4日 11:46)

 新年あけましておめでとうございます。

最近はいろいろな所でデジタルトランスフォーメーション(DX)から派生した「何とかトランスフォーメーション(XX)」という言葉がよく見られるようになった。ただし、バズワードのように使われていないこともない。何がトランスフォーメーション(転換、変換)なのかが明確ではないからだ。

 DXではっきりしていることは、これまでコンピュータや通信技術を使うだけではなく、センサをベースにして、従来は意識に上らなかった事柄を明確に可視化し、それを元にビジネス上の生産性や生活の向上を目指す、従来からの転換を意味した言葉である。DXで重要なことは、コンピュータや通信を使って便利になる、ということではなく、さらにセンサからのデータを利用してこれまで気づかなかったことを気づかせてくれて、さらにビジネス効率や生産性を上げるように転換するのである。だから、DXは使う側が主体となってはっきりとした狙いを持っていなければ無駄に終わる。DXがうまくいかないという企業は、何をどう改善するのかという目標設定が明確でないからだ。

 ではグリーントランスフォーメーション(GX)はどうか。何を転換するのであろうか。単なるCO2削減だけに留まらないことが従来とは異なる点だ。つまり環境保護と経済との両立である。従来なら、環境保護か経済優先か、という二者選択だった。別の捉え方では、「環境に配慮した先端技術を使い、産業構造を変革(トランスフォーメーション)する取り組み」と定義した例もある。環境と経済を両立させるためには、産業構造を変える必要がある。

SDGsPhoto.jpg

1 SDGs17項目にわかる持続可能な開発目標


さらに最近は、サステナビリティトランスフォーメーション(SX)という言葉を使ったお年賀メールをいただいたが、「気候変動や地球温暖化、 環境汚染など、 喫緊課題であるサステナビリティへの対応」という限り、従来のSDGs(国連が決めた持続可能な社会に向けた17項目の開発目標)と変わらない。バズワードあるいは、言葉遊びのようで、却って信ぴょう性が疑われる。

何をどう転換するのかを明確にしない、あいまいなトランスフォーメーションという言葉は使うべきではないと思うが、いかがでしょうか。

 

   

メタバースの世界は半導体チップから

(2021年12月29日 14:52)

Facebookがホールディングカンパニー制を採用し、ホールディングカンパニーをMeta(メタ)と名付けた。事業をさまざまな業種に拡大する時の手続きとして定款を書き直す必要がなくなるからだ。つまり、旧Facebookはこれから先に、SNS以外への事業に乗り出す計画があることを意味している。それがまずはメタバースの応用である可能性が高い。

メタは「超」という意味であり、バース(Verse)は宇宙のUniverseから来ている。つまり現実の世界を超えた、超宇宙あるいは超世界とても訳すべきだろうか。とにかくメタバースという言葉が独り歩きし始めた。それもFacebookをはじめとするインターネットサービス業者だけではない。半導体メーカーのQualcommNvidiaのトップがメタバース向けの半導体チップを開発し始めているのだ。

今のところ考えられている応用はゲームの中で自分のアバターと仲間が一緒に戦ったり行動を共にしたり、ZoomTeamsWebExなどのビデオ会議を表現するようなことが想定されている。結局、今のところメタバースはVR/AR(仮想現実/拡張現実)の延長で考えられており、人の没入(immersive)体験を表す技術だと捉えられている。「メタバースの最大の特長はテレポーティング機能だ」とMetaCEOMark Zuckerberg氏は述べている(図1)。テレポーティングとは、まるでタイムマシンのように場所を瞬間移動するという意味。現実には人間が瞬間移動することができないため、アバターがその代わりを果たしてくれるという考え方だ。

Zuckerberg.jpg

1 MetaCEOZuckerberg氏 出典:Viva Technology社カンファレンスビデオから

 

メタバースをまだ漠然として全体像を捉えられず、場合によってはバズワードで終わる可能性もありうるという指摘はある。

一方で、「メタバースはAIなどを使って、デジタルとリアルをつなぐ新しい手法」とQualcommCEOであるクリスチアーノ・アモン(Christiano Amon)氏は明確に位置付けている。

NvidiaCEOのジェンスン・ファン(Jensen Huang)氏は、3D-CADで設計したクルマやロボットの設計をみんなで相談し、内容を共有しながら変更したり改良したりするというシーンなどを想定している。これは、デジタルツインの表現する手法の一つだという捉え方だ。QualcommのアモンCEO(図2)は、「Snapdragon(同社のアプリケーションプロセッサの名前)はメタバースへのチケットだ」と述べ、自動車産業へのインパクトが大きいと見ている。「例えば、自動車メーカーがゴーグルをかけてクルマの情報を見る場合、クルマの走行情報やサブシステムの部品情報などが見られるようになる」として、メタバースの応用はゲームやビデオ会議に留まらず産業全体への影響が大きいと見ている。

 

Amon4.jpg

2 QualcommCEOのクリスチアーノ・アモン氏 出典:2021年度第3四半期決算報告会から

 

デジタルツインは、現実に開発している製品や生産ラインを3次元(3D)シミュレーションなどで表現し、不都合を見つけたり、性能や機能を上げる方法を見つけたりするデジタルトランスフォメ―ション(DX)の中核技術だ。ここにメタバースの没入体験に満ちた世界を描くことで、問題をわかりやすい表現に直し、解決へ早期に導くことができるという訳だ。

メタバースでは、VRのゴーグルや眼鏡を世界中の工場のエンジニアたちがリアルタイムで一緒に設計に参加できるようになる。3次元画像で描かれたクルマやロボットをみんなで見ながら、どこを調整したり改良したりするのかを理解し共有できるようになる。世界中のエンジニアがみんなで設計できる環境なら、モノづくりのスピードは圧倒的に速くなり、しかも世界の工場すべてにおいて同時に製品生産を立ち上げることができるようになる。

 ある意味、モノづくりの革命の重要な技術になる。これまでなら、誰がどうしてこんな設計をしたのだろうか、と首をかしげるような設計があっても、どうにもできなかった。しかし、世界中みんなで設計できるようになれば、何が問題なのか、に関しても共有できる。

 特にシステムのどこに問題があり、なぜ問題が起きたのか、それをどうやって解決できるのか、世界の複数の工場で問題も解決策も共有できる。しかも現実の製品とほとんど同じものをデジタルツインで再現しているのであるから、話を理解することは早い。しかも記録として残すことも容易だ。

 メタバースはデジタルツインと共にVRなどを通して使われるので、モノづくりの設計や、問題の同定と解決、さらには情報共有までもが世界レベルで同時にできることになる。

 このようなメタバースの世界に必要な半導体は、グラフィックスプロセッサGPUであり、世界中の人がリアルタイムで見られるようにするためには、高速伝送するための5Gの進化も求められ、そのための第2世代の5Gチップ(ミリ波用のRFやモデム、アンテナアレイなど)も必要になる。もちろんディスプレイドライバICPMIC(電源IC)も欠かせない。GPUよりももっと速い専用回路を作りたければFPGAを使う手もある。メタバースを実現する半導体の開発はすでに始まっている。

   

Appleはファブレス半導体事業を拡大

(2021年12月25日 14:09)

 Apple社は半導体メーカーになるかもしれない。市場調査会社IC Insightsの調べでは(参考資料1)、キオクシアよりも半導体売上額の多いファブレス半導体メーカーにすでになっている。今年の半導体売上額は前年比17%増の134.3億ドルと見込まれている。最近のニュースでは、さらにワイヤレス通信チップまで設計するようだ(参考資料2)。

AppleHQ2.jpg

図1 シリコンバレー上空から見たドーナツ型のApple本社 撮影筆者


Appleはこのほど、南カリフォルニアのアーバイン(Irvine)にオフィスを設置、大々的に半導体設計者を募集している。狙いはワイヤレスチップの開発だ。今の所Wi-FiBluetoothのチップをBroadcomSkyworksなどのメーカーから調達してきたが、これらのワイヤレスチップを自前でやろうという狙いのようだ。メキシコとの国境の街、サンディエゴに本社を置くQualcommも実は最近急遽、アーバインにオフィスで半導体設計者を採用しようとしている。4G5GのセルラーネットワークのモデムチップもAppleQualcommから奪い取ろうとしていることへの対応策だ。

 米国では、優秀な技術者を見つけても彼/彼女が別の土地に移動したくないと希望すると、優秀な技術者のいる街をデザインセンターなどのオフィスにする企業が増えている。無理に本社に来る必要がないことを企業側がアピールしているのである。

 Appleは、iPadを設計する時に、モバイルプロセッサの設計を自前にすることを考えた。当初は元DECの技術リーダーのいた企業P.A.Semiを買収したが、失敗に終わった(参考資料3)。このため優秀なエンジニアのいる企業にあたりを付け、スタートアップのIntrisity社を買収、ライセンス供与を受けたArmプロセッサの基本回路に手を加え、より高速のプロセッサ回路をIntrinsityの技術で設計してきたという経緯がある。

 その後Appleは、それまでライセンスを購入してきたImagination TechnolgiesGPUコアを打ち切り、グラフィックス回路を自前で設計した。しかし、回路設計やグラフィックスのアルゴリズムのノウハウが追い付かず、結局Imaginationのエンジニアも一緒に買収した。そしてAppleは電源を供給するパワーマネジメントICPMIC)も自前で作るため、それまで電源回路ICを設計していたDialog社(現ルネサスエレクトロニクス)のPMIC部門を買収した。ここでもエンジニアも一緒に買収した。

 Appleは少しずつ半導体ICを自前で設計するようになり、かつその売上額もキオクシアを超えるまでに成長した。そして、今回はワイヤレス通信回路のICを自社開発するため、エンジニアを大々的に募集し始めた。しかも場所は、BroadcomSkyworksなどが集積している南カリフォルニアのアーバイン市だ。ここはロサンゼルスとサンディエゴの中間に位置する街で、気候が1年中温暖な土地柄である。カリフォルニア大学アーバイン校があり、エンジニアのリクルーティングもやりやすい。

 Appleの狙いは明らかで、その街にオフィスのあるBroadcomSkyworksから通信回路設計技術者やRTL設計者などを雇うためである。Wi-Fi設計を知っていると5Gのようなセルラー通信の設計も比較的容易になる。

 Appleは残念ながら5G向けICの設計はそう容易にはできないことを知っているため、Qualcomm3Gライセンス料に不満を表していたものの、結局Qualcommのチップを泣く泣く継続させることになった。しかし、いつかは5Gチップも自前で開発しようとの思いは断ち切れない。このことに焦ったのはQualcommであり、Qualcommもアーバインに設計者募集の案内をLinked-inで急遽始めたという訳だ。優秀なエンジニアを他社にリクルートされないようにするためである。

 AppleはまずWi-Fiチップからワイヤレス通信ICの設計を始める。ここでOFDM(直交周波数多重)などのデジタル変調技術を磨き、いずれ5Gのモデムにやってくる。ただし5Gはその頃はミリ波技術に中心が移り、QualcommRF回路とアンテナ技術でもさらに強くなっているはずだ。RF回路の習得もそれほど簡単ではない。AppleはおそらくQualcommからのエンジニアをリクルーティングすることになるだろう。無線通信回路技術はアナログとデジタルの両方の回路知識と電磁界解析の知識が必要なため、デジタルしか知らないエンジニアでは設計できない。このためQualcommからエンジニアを引き抜くことは十分考えられるシナリオとなる。

 

参考資料

1.       "17 Semiconductor Companies Forecast to Have >$10.0 Billion in Sales This Year," IC Insights, (2021/12/20)

2.       "Apple Builds New Team in Southern California to Bring More Wireless Chips In-House," Bloomberg, (2021/12/16)

3.      津田建二、「iPadのアプリケーションプロセッサA4を巡るさまざまな憶測から真実を探る」、セミコンポータル、(2010/04/06


   

東芝の分割案を点検する

(2021年11月 9日 15:09)

東芝がインフラ部門と、半導体デバイス部門、メモリ部門に3分割するという案を検討している、と複数のメディアが報道した。東芝は創業100年続く名門企業である。分割する理由は、それぞれを独立させて未上場会社とし、再上場させることでキャピタルゲインを稼ごうという目論見のようだ。分割することで企業価値が高まるとしている。ただし、東芝は、当社から発表したものではないというニュースリリースを流している。

 

綱川氏1.jpg

図 東芝 代表執行役社長CEOの綱川智氏 写真は2017年に筆者が撮影

 

 このニュースを聞いて、感じたことは、東芝というブランドと企業価値をもはや諦め、錬金術で金を得たい、というファンドの発想だな、という思いだ。これまで築き上げてきた東芝というブランドを捨てることで、どういう会社にして東芝が前に進むのか、どのような戦略を描いて世の中に貢献できる会社にしたいのかという思いが全く伝わってこない。

 2015年に東芝の不正会計が明るみに出て以来、東芝は利益が出ていた医療や半導体メモリ部門を次々と手放し、東芝の目指す成長戦略が見えなくなっていた。ひたすら現金を手に入れ、「死に体」の東芝を再建することだけに集中してきた。とにかく儲かっている部門を売却することで多額の収入を得ることに集中すればするほど、残った本体は何をするのか、疑問が持たれていた。2018年のメモリバブルの真っ最中に利益がたんまり出ているメモリ部門をファンドに売却しキオクシアと名前を変えたが、この時は半導体部門を売却したのではなく利益が十分に出ているメモリ部門だけを売却した。半導体企業としての相乗効果は全く無視した。キオクシアは翌19年、メモリバブルが弾け赤字に転落した。

 そしてキオクシアはメモリの会社だというPRも奇妙な宣伝だった。メモリ会社なのにDRAMというメモリを扱わないのだ。NANDフラッシュというストレージデバイスを扱いながら、メモリと称していた。通常パソコンのメモリと言えばDRAMを指し、NANDフラッシュやHDD(ハードディスクドライブ)はストレージを指す。一般常識とは異なる言葉を使っていた。

 だったらストレージ企業かと言えば、そうではない。NANDフラッシュは生産するが、HDDのようなストレージ部門は東芝本体に残しキオクシアは生産しない。その理由は、カニバリズム(自分が自分の肉を食べるという意味)であり、半導体ストレージがHDDを食うようになるからだとしている。しかし、最近の高速HDDは、キャッシュメモリ的な役割として、NANDフラッシュを搭載したHDDが大量に出回っている。カニバリズムではなくシナジーなのだ。キオクシアの四日市工場を共同運営するWestern DigitalHDDNANDフラッシュの両方を持っている。どうやら東芝の経営陣は半導体やシステムを理解していないようだった。

 そして今回の3部門の分割となると、やはりここでも変だなと思わざるを得ない。なぜメモリと半導体部門を切り離すのか、納得できない。NANDフラッシュメモリ部分は信頼性が低いため、技術的に同じところを何度も書き換えないなどのアルゴリズムを使って信頼性を高めると共に、強力な誤り訂正が必要なメモリコントローラが欠かせない。ロジックIC、あるいはシステムLSIというべきこのメモリコントローラを半導体部門が担当していない。メモリと半導体は切っても切れない関係があるのに、いとも簡単に別にする。また、東芝本体にあったシステムLSI部門を2021年2月につぶしてしまった。

 それだけではない。2019年に電子ビーム露光装置を製造している東芝デバイス&ストレージ社傘下のニューフレアテクノロジー社をHOYAが売ってほしいと求めた時は、東芝経営陣がこれまで全く見向きもしなかったニューフレアを絶対売らない、という態度で株式売却を必死に止めた。まるで駄々っ子のように筆者の目には映った。フォトマスクを手掛けるHOYAとしては、自社製の電子ビーム露光装置でフォトマスクを作成するためにニューフレア買収を提案したのに残念な結果に終わった。

 キオクシアと半導体を別にする場合でも、東芝は全株式を支配するのであろう。残念ながらこれでは半導体ビジネスは成長しない。足の長いインフラビジネスとは半導体は経営スピードが全く違うからだ。

理想的にはキオクシアと東芝半導体部門が一緒になり、かつ東芝が株式を一切持たない完全独立の組織にするのなら、成長する余地はある。世界では、オランダのPhilipsから独立したNXPASMLは親会社の株式はもはやゼロ、ドイツのSiemensから独立したInfineonも親会社の株式はゼロ、Hewlett-PackardからAgilentを経て独立したAvago(現Broadcom)も親会社は干渉できない。東芝から完全独立した半導体メーカーであれば、世界と対等に勝負できる企業になりうる。半導体をけん引するITはスピード経営が最優先されるからだ。いちいち親会社にお伺いを立てる経営では勝負にならない。

 もちろんその場合、新半導体メーカーの社長には、半導体企業の社長経験と実績のある国内外の人間を選ぶべきだろう。少なくとも自分で資金調達が出来なければ、半導体の社長は務まらない。日本語を話せるかどうかはどうでもよい。

   

TSMCが日本に来ても国内半導体産業は変わらない

(2021年10月17日 14:15)

TSMC1014日に開催した2021年第3四半期の決算発表の席で、TSMCが日本にも22nmおよび28nmのチップを製造する工場を来年建設する、と発表した。このニュースは日本経済新聞だけではなく、台湾のTaipei Timesにも掲載されており(参考資料1)、これまでのリーク報道に終止符を打つ。

 TSMCCEOである魏哲家氏が「当社の顧客と日本政府からこのプロジェクトをサポートする強いコミットメント(約束)をいただいた」と述べた。「当社のグローバルな製造拠点を広げることによって、顧客ニーズにもっと良く応えることができ、優秀な人材ともグローバルにリーチできる。もちろん、投資に対する適切な回収を稼ぎ、当社の株主に長期的に利益を生む成長を提供することは言うまでもない」。

ただし、日本工場の生産能力や財務に関する詳細は明らかにしていない。また合弁かどうかについても回答していない。これまでは海外に工場を建てる時、ケースバイケースだが、重要顧客などとの合弁を考えていると述べていた。日経はTSMCとソニー、デンソーと共同で熊本県に新工場を建設する方向で調整を続けていると報じている。また、TSMCは欧州にも工場を建設することも検討しているという。

経済産業省はTSMCを誘致することによって日本の半導体産業を底上げできると述べているようだが、本当だろうか。日本に工場を持つ企業としては、日本のキオクシアや東芝デバイス&ストレージ社、ソニーセミコンダクタソリューションズ、ルネサスエレクトロニクス、ロームなどの大手に加え、すでに外資系の工場も多い。台湾のファウンドリであるUMCは三重工場、Micron Technologyは東広島工場、Texas Instrumentsは会津と美浦に工場を運営し、onsemiも会津工場を操業している。日本における半導体工場の生産能力は、台湾、韓国に続き実に世界の16%も占めているのだ(図1)。

 

FigIC.jpg

1 日本の半導体生産能力は世界3位 出典:IC Insights


にもかかわらず日本企業の半導体世界シェアは10%、半導体ICに限ると6%しかない。つまり国内に外資を含めて半導体工場は韓国並みにたくさんあるが、国内半導体企業のシェアはとても小さいのである。ここにTSMCが加わることになり、日本の生産能力はさらに高まる。しかしこれによって日本の半導体企業のシェアがどうして増えようか。

日本は半導体製造装置や半導体関連材料は世界的に強いが、その理由は日本の半導体メーカーにさっさと見切りをつけて海外の半導体メーカーを顧客としていち早く取り入れたからだ。例えば、半導体製造装置で世界の3位を行く東京エレクトロンの海外売上比率は85%に達し、半導体テスト装置メーカーのアドバンテストとなると92%以上も海外売り上げとなっている。東京エレクトロンやアドバンテストはすでにTSMCや韓国のサムスンに大量に出荷しているのである。ここにTSMCが日本に来て事態は変わると思うだろうか。

日本の半導体産業を強くするならやはり日本の半導体企業を強くするしかない。かといって世界の半導体の潮流と大きくずれてはやはり発展しないだろう。世界と同様、ファブレスかファウンドリになる道と、昔からの大量生産ビジネスであるメモリのIDM(設計も製造も手掛ける企業)をやる道しかない。それもファブレスは10数年推進してきたが、いまだに弱い。世界のトップテンすら入らない。メモリのIDMはキオクシアがまさにそうだが、ウェスタンデジタル社との共同出資による工場を運営している。ここにDRAM工場を設立するという選択肢はありうる。しかしNANDフラッシュと同様、設備投資が大きくのしかかる。

日本が得意な製造技術を活かすなら、やはりファウンドリだろう。筆者は10年前から日本独自のファウンドリを起こすべきだと提案してきた(参考資料2)が、誰も手を上げていない。それどころが10年前に、今からでは遅すぎる、とも言われた。

また日本ではファウンドリと称する事業をやっていたが、それは「製造ラインが余っていたら使わせてあげる」という殿様商売だった。このためにフォトマスクセットを持ってきたら、使わせてあげるということだった。つまりファブレスの実態も半導体設計の実態も知らずしてラインを持っていただけにすぎなかった。世界のファウンドリの常識からは大きく逸脱している。

世界のファウンドリは顧客のことをよく知っている。半導体LSI設計のどの段階でもサポートするのである。顧客によっては、システムの論理設計はやるが、レイアウト設計はやらないし興味もない、という客が多い。論理設計さえしたくない顧客もいる。OTTOver the top)と呼ばれるインターネットサービス企業が自社チップを欲しいとしてもLSI設計言語であるHDLVerilogを覚える気がなければ設計できない。だから、LSI論理設計からフォトマスク出力までを請け負うデザインハウスを利用して設計してもらうのである。このためTSMCのようなファウンドリはデザインハウスを当初は自社で行っていたが、今は外部にスピンアウトさせた。また複数のデザインハウスともパートナーシップを結んでいる。日本でファウンドリ事業を行うならLSI設計を熟知した技術セールスパーソンが欠かせないのだ。しかし、これまでの日本はラインを貸すだけの自称ファウンドリでは世界と勝負にならない。

Fig2RuleCapacity.jpg

2 半導体生産量が多いのは20~10nmプロセス 出典:IC Insights


半導体LSI7nm5nmプロセスばかりではない(2)。むしろ20nm以上のプロセスや、パワーICのように0.8µmプロセスなどに根強い需要がある。どのような電子回路でも電源となるPMICが欠かせない上に、これからの自律化社会やDX(デジタルトランスフォーメーション)では微細化ではないプロセスの半導体センサが欠かせないからだ。根強い需要をさまざまな顧客から得られれば、微細化しなくてもファウンドリビジネスはやっていける。どうしても微細化したいなら、少しずつ追いつくようにプロセス開発を行えばよい。その時のプロセスの先生は日本の半導体製造装置メーカーとなろう。

 

参考資料

1.       Wang, L, "TSMC plans new plant in Japan," Taipei Times, Oct.15, 2021

2.       津田建二、「一刻も早く日本はファウンドリを設立すべき」、セミコンポータル、(2010/10/29


 

   

「インフィニオンが設立したオーストリア300mm新工場は欧州の野心」

(2021年9月18日 21:25)

ドイツのインフィニオンがオーストリアに2番目の300mm工場をオープン、そのセレモニーでインフィニオン関係者だけではなく、オーストリア連邦政府やフィラハ市長、欧州委員会(EC)をはじめ欧州全体がこの工場開設を祝い、半導体産業を盛り上げることで一致した。「いよいよ欧州のキャッチアップが始まった」と表現する人もいて、欧州は半導体の世界シェアを今の10%から2030年に20%へ上げるという目標に本気で取り組んでいく姿勢をうかがい知ることができた。


Ready_for_Mission_Future_01.jpg

 

1 薄い300mmウェーハを生産するインフィニオンの関係者たち 真ん中がインフィニオンCEOのラインハルト・プロス氏、右が同COOのヨッヘン・ハネベック氏、左がインフィニンオーストリアCEOのザビーネ・ヘーリシュカ氏 出典:Infineon Technologies

 

これは、インフィニオンがオーストリアのフィラハに300mmウェーハのプロセス工場をオープンし、セレモニーをリアルとバーチャルのハイブリッドで開催した917日に欧州やオーストリアの関係者たちが話していたシーンである。インフィニオンは300mm工場をすでにドイツ国内のドレスデンに持っているが、今回は2番目の工場をオーストリアのフィラハ市に設立した。この工場の特長は、300mmウェーハといっても髪の毛(直径70~100ミクロン)よりも薄い厚さのウェーハを扱うこと。つまり、数十A(アンペア)以上の電流をオンオフできるパワー半導体を生産するのであるが、この半導体は厚さが薄ければ薄いほど熱を外へ排出できる。だからこそ、インフィニオン側は、髪の毛よりも薄い300mmウェーハを扱う工場であると何度も表現した。

 

2018年に工場建設に着手

 工場建設に着手したのは2018年。2022~23年ごろから本格的に立ちあがるEV(電気自動車)需要を見据えて、パワー半導体の需要拡大をビジネス機会だと捉えたからだ。翌年は世界半導体産業が2017~18年のメモリバブルが弾けて落ち込んだが、インフィニオンは売上額を落とさなかった。

今回、予定よりも3ヵ月前倒して工場を稼働させた。今が半導体不足の真っ最中だからである。

 この工場オープンに際して、インフィニオンはオープニングセレモニーを開催、その様子を日本からもバーチャルで見ることができた。本来なら出張でオーストリアまで行かなければならない所、新型コロナによりバーチャル開催となったため、日本からでもセレモニーに参加・取材できた。

 オープニングセレモニーでは、ECの委員の一人ティエリー・ブルトン氏のビデオで参加し、彼は「半導体は今やあらゆる産業に欠かせない重要なモノになった。クルマや航空機、スマートフォン、パソコンなどさまざまな応用に使われている。産業だけではなく社会にも浸透してきた。ところが今は半導体不足を迎えている。欧州はまだ十分な半導体を持っていない。今回インフィニオンが新工場を設立したことは強く歓迎する」と述べている。

 さらにはEC関係者の中には、「新しい工場は欧州の野心(ambition)である」と表現する人もいた。

 オーストリアのフィラハ市長も「フィラハの市民の65%はハイテク企業に勤めている。既存のインフィニオンの工場を拡張して新工場を作ってきたことは、フィラハはインフィニオンと一緒に歩んできたといえる」と表現した。今回の工場建設には延べで180万時間を要し、900名が建設現場で働いた。使ったコンクリートは7万立方メートル、使用した鉄鋼は1.5万トン、工場に這わせたケーブル接続の長さは1500kmにも及ぶ。この1年間は新型コロナ禍の中で作業したが、作業者を突き動かしたのは「フィラハの思い」だったとしている。

 

半導体はカーボンニュートラルにも欠かせない

 

 セレモニーに先駆けて開かれた記者会見では、インフィニオンのCEOであるReinhard Ploss氏は、「(同社は)モビリティ(自動車や電車、航空機などの輸送手段)やエネルギー効率を上げるための半導体で成長してきた。これまで(DRAM子会社キモンダの倒産という)経営危機があったが長期的な視点で投資してきた。新工場で何を作るかは、製品と応用で決まる。EVやソーラー、風力など高電圧で少ないロスが求められる分野、デジタル化とそのための電源に向けたICなどの半導体を生産する。さらに地球温暖化という大きなロスにも挑戦している。300mmの薄いウェーハは成長を続けるためのカギとなる」と述べている。

 半導体はあらゆる産業だけではなく社会を賢くするスマート化の頭脳となり、パワー半導体はその手足となる。人間の手足にも脳に匹敵するような神経があり、脳(MPUMCUSoC)と、手足を動かす筋肉(パワー半導体)は近くにいて連携しているとも言われているように、MCUとパワー半導体がEVやソーラー、ロボットなどの機械を動かすのに威力を発揮する。インフィニオンがサイプレスを買収した動機の一つはマイコン(MCU)を充実させたかったことがある。

 賢いクルマ、すなわち自動運転車や、賢いエネルギー、すなわちロスの少ない効率の良いエネルギーの実現は、カーボンニュートラルを実現する技術でもある。消費電力を下げて省エネを推進する重要な技術が半導体でもある。欧州の人たちの話を聞いて、半導体は、EVを発展させるだけではなくカーボンニュートラルを実現する手段でもあることを彼らはよく知っていると思った。

 翻って日本はどうか。半導体の世界シェアが10%まで落ち、ICのシェアとなると6%まで落ちている。これを救おうという意思は未だに総合電機からは出てこない。半導体に政府が肩入れすることを良く思わない人たちが総合電機に大勢いるからだ。半導体は外から買えばよいという態度でいる限り、IT/エレクトロニクスは世界に負けたままから抜け出せない。GAFAMに匹敵する企業が日本から生まれないことにもつながっている。

   

半導体不足を総括し、その後の世界をイメージしよう

(2021年8月28日 10:40)

半導体不足が自動車産業からスマートフォンやパソコン、さらには産業機械にまで広がってきた。産業機械の一つ、半導体製造装置に使うマイコンなどの半導体に影響を及ぼし、半導体がないから半導体を作るための製造装置が作れない、という事態に発展しようとしている。

そもそも半導体不足を起こしたきっかけは、車載用半導体を今すぐほしいという要求から始まった。この騒動は、昨年1~2月に顕在化した新型コロナにより世界各地でロックダウンが始まり、自動車工場が止まったことによる。ロックダウンで工場の社員は出られなくなり、世界各地の自動車工場が止まった。しかし工場を1週間止めると損失は大きい。例えばトヨタでは売上額が2019年度約30兆円だから、5日(1週間)/300日(実働)として荒っぽいが単純に計算すると、実に5000億円の機会損失になる。これを取り戻さなければ、機会損失から社員の雇用にまで影響が出てくる。そこで、自動車メーカーは、マスクや手洗い、三密回避などコロナ対策をした上で、工場を動かし始めた。

 停止する時は、半導体の入荷をすぐに止める。不足する時はすぐに納入する。いわゆるこのようなジャストインタイム方式が世界中の自動車メーカーに広まってきたことも車載半導体不足の一因だ。他の部品はともかく、半導体は1週間後にすぐ持って来いと言われても、すぐに作れるものではない。シリコンウェーハから半導体IC製品を製造するには約3カ月かかる。ウェーハからチップに切り出し、配線しプラスチックに封止、テストして良品を出荷するにはさらに1カ月かかる。つまり4ヵ月もかかるのだ。

 

300mmwafer.jpg

図 300mmシリコンウェーハ 出典:Infineon Technologiesの本社で筆者撮影

 

 半導体ICを製造するにはまっさらのシリコンウェーハ(直径が300mm、厚さ0.8mm程度のシリコンの円盤)から半導体回路を形成するまでに、1000以上の工程を通る。例えば10~20階建ての高層ビルを建てていく工事に似ている。つまり、1階ずつ形成していくようなもの。1階作るためにの工程数は多いだろうが、半導体の場合は1階作ってもそのうちのいくつかの場所は削り落として、更地にする部分も出てくる。そう、凸凹のあるビルを作るような工程を経て、最上階はフラットにする。ざっとこのようなイメージで半導体ICを形成していくため、とても時間がかかる。

 にもかかわらず、自動車メーカーはこれまで生産をずっと絶やさず工場を運営してきたためにジャストインタイムでも半導体側は生産計画を立て、製品を納期に間に合うように生産してきた。しかし、コロナのようにラインを完全停止してから製品を要求しても、在庫がある分は提供できてもゼロから作り直しとなると、どうしても時間がかかるから半導体側は生産計画を見直して優先順位を付けなければならない。半導体ICはパソコンやスマートフォンの製造は欠かせない。電気製品だけではなくあらゆる社会問題を解決するために絶対必要なツールになっている。かつては産業のコメと言ったが今はシステムの頭脳に変わってしまっている。さらに最近ではデジタルトランスフォーメーション(DX)やスマートシティをはじめとするスマートXXXといった新しい需要が出てきている。

 旺盛な半導体需要を満たすために優先度を見直してきた。スマートフォン向けだと手のひらサイズの中に30年前のスーパーコンピュータに匹敵する機能を詰めた半導体チップを作るために最先端の微細技術を使い高いコストかけながら生産している。もちろんその分高い価格で売る訳だが、車載半導体は低価格で高信頼性・高品質が要求される。つまり手間ヒマがかかり割に合わないのである。当然、優先度は下がる。しかし、半導体不足が表面化し自動車メーカーが政府まで動かし出荷を促すようになれば、それに従わざるを得なくなる。実際、半導体製造を請け負う専門業者(ファウンドリと呼ぶ)の台湾TSMCは、半導体不足が問題になり始めた2020年第4四半期の車載向けチップの販売額を前四半期比30%増、2021年第1四半期も同30%増、と増産し続け、2021年第2四半期になって12%増と少しピッチを緩めた。

 そうすると、スマホやパソコン、五輪需要でモニターやテレビなどのIC不足が表面化してきてきた。その他数量はスマホなどと比べるとそれほどでもないが、一般家電の洗濯機や炊飯器、冷蔵庫、ロボット掃除機、エアコンなど、賢くなり始めた家電向けの半導体も足りなくなる。もっとも足りないのは、クラウド需要で大量のコンピュータが必要なデータセンターである。クラウド需要は今回の新型コロナでも需要が大きく、企業向けのオンプレミス需要と相まってハイブリッドクラウド需要も高まってきている。

 余談だが、賢い家電に見られるように賢いことを英語ではスマートという言葉をよく使う。スマートXXXとはまさに賢くすることに他ならない。賢くするために絶対欠かせないのが半導体である。だから半導体は今やシステムの頭脳になった、と表現した。ところが、日本の電機のトップ経営者は「半導体は外から買って来ればいい」という態度にいまだに終始している。最近アマゾンンのクラウドサービス部門(ここがアマゾンの最大の稼ぎ頭)であるAWSAmazon Web Service)が開発した独自チップGraviton 2の性能をさらに高めるGraviton 3の開発を計画している。加えて、AWSは、セキュリティICも開発しており、さらに独自チップをAI推論向けに開発しており、年内には学習用AIチップも発表する予定だ。

 では、半導体不足はいつ解消するか。現在の需要のままなら22年後半あたりに解消し、23年には過剰になるという見方はある。しかし、その頃にスマート化やDXが進むと半導体需要は追加される。このため23年でも不足が続くという見方もある。24年には一段落するかもしれないが、スマート化とDXの進展で新たな需要が必ず増えてくるため、やはりいち早く増産し市場をとる方が勝ち組になるだろう。半導体市場は、一段落することはあっても必ずまた需要が旺盛になってくる。これがシリコンサイクルだ。半導体という頭脳はいくらあっても人間の頭脳に追いつけないからだ。

 先ほどのアマゾンの例で示したのは、独自チップで競争企業と差をつけるために半導体を独自に開発し、それを継続するという方向だ。独自チップは消費電力が少なく、しかも独自の機能を追加できる。ファブレス半導体のアマゾンやグーグル、アップル、フェイスブック、マイクロソフトなどのインターネットサービス企業だけではなく、エリクソンやノキアなどの通信機器メーカー、HPEのようなコンピュータメーカーまでも独自チップを開発しており、ファブレスで半導体を設計する企業は増えている。こういった新しいファブレス需要に応えるため、TSMCUMC、グローバルファウンドリーズのファウンドリ企業なども新工場を続々計画している。日本だけが指をくわえている状況だが、これで良いのだろうか。