半導体業界の最近のブログ記事

問題山積のラピダス社が船出、問われる解決姿勢

(2023年1月 2日 21:34)

新年明けましておめでとうございます。

昨年終わりになって、ラピダス社が活動し始め、賛否両論が湧き上がっていた。大きく期待する声と、どうせダメだろう、という声だった。これらを整理してみよう。

IMG_3270.jpg

図1 2023年元日における成田山新勝寺


 ラピダス社は、国が周到に準備した「国策会社」である。出資企業を募り2022年8月に設立された。経済産業省が「ポスト5G情報通信システム基盤強化研究開発事業」のうち、「研究開発項目②先端半導体製造技術の開発」に関する実施者の公募を行い、ラピダス社を採択し、700億円を補助金としてだすことを決めた。決めたのが発表する少し前の11月である。

  同時に2nm相当のプロセス技術を開発する研究開発会社LSTC(技術研究組合最先端半導体技術センター)も設立した。ここに大学と国立の研究所も参加する形をとっている。2nm相当のプロセス技術を開発してから量産に持っていくため、研究開発会社も必要としたためだ。

  これまでの発表で決まったことはこれだけだ。これだけでうまくいくのかいかないのかを議論している状態である。海のものとも山のものともわからない。


これまでの国プロとの違い 

 ただ、これまでの国家プロジェクトとは大きな違いは大きく四つある。一つは、民間企業の形をとっており、元財閥系総合電機の集合体であった国プロとは全く異なっている点だ。責任の所在が明確に、Rapidus株式会社にある。国プロでは責任所在があいまいで、国が主導して運営してきたため、失敗しても「成功」という評価をした。このため失敗の分析を行わなかったため、失敗を教訓として生かせなかった。

  2番目の理由は、かつての国プロでは個別的に素晴らしい成果の上がった研究業績でさえ、プロジェクト終了後には参加した総合電機の経営陣はそれらの業績を全て捨てたこと。半導体産業そのものを憎んでいたからだ。彼らがよく言っていた言葉は「当社は半導体が悪いから、全社の業績が悪い」だった。半導体部門を捨ててみて初めて、本体の公共部門が悪かったから会社全体が悪かったことに気づいた。全て後手後手だ。その後、総合電機がリストラやって利益は出るようになったものの、売り上げは全く伸びていない、すなわち成長していないことは周知の事実だ。ラピダス社は総合電機とは独立した団体。

  3番目は、オールジャパン体制をやめたことである。海外企業との提携もありということで、さっそくベルギーの世界的な半導体研究開発会社imec、そして2nm相当のデバイスを使いトランジスタを試作したIBMと立て続けに共同開発のための提携をした。半導体のサプライチェーン(研究開発から設計、製造まで)は1国だけでは構築できない。無理にオールジャパンをやっても現実的ではない。かつてimecは、日本の国プロであったEIDEC(日本でEUVのマスク技術を開発する企業)や産業技術総合研究所とも提携しようと模索していたが破断してきた。

  4番目はラピダス社が半導体専門のファウンドリ企業であるということだ。これまでの日本の半導体産業は、総合電機の一部門にすぎず、自分で経営判断できなかった。国プロでは、旧財閥系の総合電機の経営者が経産省との窓口になっていた。公共事業部門のトップが経営陣につくという総合電機には、ITと半導体の役員はとても少なく、資金も人材(人事)も公共部門の役員に支配されていた。世界の半導体会社は韓国のSamsung以外は全て半導体専門企業である。かつての日本の半導体企業では、素早い判断、Agile(素早い対応)、resilience(素早い復帰対応)などという言葉とは無縁であった。

 

問題は山積

 これまでの国プロや大手半導体企業とは違うだけで期待はできないが、誕生したこと自体、これまでの企業とはビジネスへの姿勢が全く違う。かつての日本は、投資すべき時に海外のライバル企業が投資しても、投資しなかった。EUV技術に対しては、ニコンやキヤノンは光源の出力が小さすぎてとても実用化できるかどうかわからない早い時期に、大きな投資はできないと考え早期に白旗を上げた。もし光源の出力が上がりEUVがうまくいくことがわかれば後で参入すると言っていた。

  オランダのASMLは、光源の出力がまだ小さい時期にリソグラフィシステムの全体設計を最初から始めていた。光源の出力が使えるレベルに上がってくれば、それを使えばよいと考えていた。エキシマレーザーリソグラフィで生産性の高いツインスキャン技術を開発していたASMLは、ArF/KrFレーザーリソで日銭を稼ぎながら、EUV開発に邁進してきた。それでも開発費が足りなくなると、EUVリソの潜在ユーザーであるIntelSamsungTSMCから開発費を分担してもらった。優先的に装置を提供する条件を出していた。

  ラピダスはこれまでの日本的な企業とは違う姿勢を打ち出している。海外との提携や人材、ダイバーシティへの姿勢など、これまでとは違う。だからと言ってラピダスが成功するための課題は多い。

2nm相当プロセス量産まで(202527年)の日銭を何で稼ぐのか?

2nm相当のプロセスの実際の最小寸法は11~12nmになるだろうが、エリアスケーリング技術(DTCO)を自社開発するための設計の道筋は出ていない

・資金調達を国頼みだけでは難しく、世界から調達できるか?

・海外の人材も含め半導体人材の育成の具体的な道筋がまだない

2nm相当のプロセス工場の設立から運営までに数千億円の調達をどうするのか?4

2nm相当のプロセスで何を作るのか、ユーザー開拓の人材採用はどうするのか?

・ダイバーシティを考えた人材の採用をどうする?

・半導体をけん引するITの最新情報が豊富なシリコンバレーとのつながり形成をどうする?

・ラピダス誕生で怒るTSMCとの関係修復を経産省はどう図っていくのか?

・出資企業の本気度は高いのか?お付き合いといっているところもある。

 

 こういった山積みの課題が多いからと言って失敗するとは限らない。問題を一つ一つ解決していく姿勢があれば成功につながる。ただ、全社が問題解決に挑む姿勢を束ねることができるのか、「無理だ」という声をどう説得するのか、マネージャートップにいる経営者の手腕が問われる。

 

ブランド不要のファウンドリTSMCが世界半導体の頂点に立った

(2022年11月20日 13:56)

 TSMCが初めて世界ナンバーワンの半導体メーカーに立った。2022年第3四半期における世界半導体企業の上位15位までのランキングにおいて、TSMCSamsungIntelを抜き世界の頂点に立った。第3四半期のTSMCの売上額は202億ドル、第2位のSamsungのそれは172億ドル、3位のIntel153億ドルとなった。

  これは米市場調査会社のSemiconductor Intelligenceが各社による第3四半期の売上額をまとめた表1をベースにした。ここでは、ファウンドリの売上額を含んでいないものの、TSMCの売上額がすでに発表されていることからTSMCが首位になった。ファウンドリを含めないのは、次のような理由による。半導体各社の売上額を合計すると、世界半導体市場規模がわかるが、ファウンドリの売上額=ファブレスやIDM(設計と製造を手掛ける半導体メーカー)のコスト、となるため、ファウンドリを加えると半導体の市場規模が正確ではなくファウンドリの分をダブルカウントすることになる。とはいえ、ファウンドリも半導体製造会社であるから同じ売上額ランキングで表現することは適切だと思う。

3Q22Ranking.jpg

1 ファウンドリを除く世界の半導体企業ランキング 出典:Semiconductor Intelligence

 

 WSTS(世界半導体市場統計)の発表によると、2022年第3四半期(3Q)の世界半導体市場は、前期比で6.3%減少した。第4四半期もよくないため、2022年の前半と比べ、後半は10%以上落ち込むとみている。この落ち込みの割合は、2009年の前半が2008年後半に比べ、21%低下したとき以来の大きな落ち込みだという。このときはリーマンショックによる影響だったが、わずか1年で回復した。

  今回、20223Qの落ち込みはメモリメーカーがひどく、Samsungが前四半期比19%減、SK Hynixは同20%減、Micronは同23%減となっている。日本のキオクシアはまだましで同6.6%増と善戦してるように見えるが、単なる時期ずれの影響にすぎずない。むしろ9月末にウェーハ投入量を30%減らすことを発表している。

  メモリメーカーとは反対に工業用や自動車用のチップに力を入れている半導体メーカーは好調で、欧州のInfineonは同15%増、STMicroelectronics13%増と好調だ。表1には掲載されていないが、トップのTSMCは、ドルベースで同11%増、台湾元ベースでは15%増となっている。

  TSMCは第4四半期の見通しを3Qと同程度の199207億ドルと見込んでいる。それでもTSMCは今後を警戒して、投資を当初予定の2割減としている。TSMCもほかの半導体メーカーと同様とみるのは間違い。TSMCの投資には未来志向の投資が多く含まれている。例えば、20222Qの投資では、「Capexの中で7~8割を2nmプロセスの開発に使った」と同社広報トップのNina Kao氏は述べている。つまり直近の5nm4nm3nmへの開発投資はすでに終わっているのである。量産投資も含めてのCapexであるため、「次の新工場への投資を遅らせているだけで、特に金額を減らしたわけではない」、というコメントも決算報告でCEOC.C.Wei氏は述べている。

  メモリメーカーの落ち込みは、ユーザーやディストリビュータの在庫調整にすぎず、将来への投資を減らすわけではない。この在庫調整にはせいぜい1年程度の期間がかかるかもしれないが、生産調整によって在庫を減らすだけである。むしろ、将来にわたって成長産業である半導体に投資する姿勢は変わらない。

  しかも半導体メーカーの中でメモリメーカーが売り上げの山谷の差が最も大きい。1台のシステムにSoCやマイコン、電源ICなどは、同じ製品を1個あるいは2個しか使わないが、メモリはバイト単位で使うため最低でも8個か9個(誤り訂正のためのパリティビット用)ないし16個か18個以上を使う。使用量が1台のシステムによって大きく左右されてしまうのだ。このためSoCやシステムLSIの製造を手掛けるファウンドリの浮き沈みは小さい。

  ファウンドリというブランドを持たない台湾企業が半導体企業のトップにのし上がったということは、半導体産業ではブランド力は消費者向けの産業よりもあまり意味を持たないということになる。名よりも実を取る台湾のビジネスは、いよいよ大きくなってきた。

 

またもバスに園児置き去り事故、レーダーセンサ設置を義務付けよ

(2022年9月 6日 09:33)

またしても幼稚園児を送迎バスの中に置き去りにして死亡させるという事故が起きた。炎天下の中でバスの中は50℃にもなってしまう。こんな状況では大人でさえも何分もじっとしていられない。ましてや子供の体は大人と違って未だ頑丈にできていない。このような痛ましい事故は毎年どこかの保育園、幼稚園で起きている。子供は国の宝である。なぜ、こういった事故が繰り返されるのか。

幼稚園職員が人数をきちんと管理していればこのような事故は起きないはずだが、それでも起きているということは、単なる行政指導のようなインストラクションだけでは済まされないことを示している。大人や職員がしっかり管理さえすれば済むことではあるが、時に気のゆるみがでて、このような事故に至るのであろう。

こうなると、たとえ大人がミスしても子供がバス内にいることをみんなに伝えるシステムがあれば防げるはずだ。実は、それに適したシステムがすでに出来ている。レーダーセンサ(電波センサともいう)だ。24GHz60GHzなどのミリ波を用いたセンサを使えば実はそれがわかる。赤外線センサのように光を使うセンサだと、座席の陰に隠れていて見えない場合は検出できない。しかし、ミリ波レーダーを使ったセンサだと、座席の陰であろうと毛布の下であろうと人間には見えない所に幼児がいても、検出できる。

 しかも、センサからのデータをデジタルに変換し、画像データにしたりあるいはテキスト情報にしたりして、4G5Gなどのセルラーネットワークから各自のスマートフォンに園児が残っている情報を届けるようにすればよい。それも運転手だけではない。センサからのデータを受け取る人が幼稚園の職員と園長などがみんなで共有していれば、万が一運転手がスマホからの連絡に気が付かなくても誰かが気が付く。場合によっては、園児の親にもその情報が届くように設定しておけば、みんながすぐに気が付いて事故を防ぐことができる。死と直結するシーンではプライバシーがどうのこうのという問題ではない。

radarsensor.png

1 レーダーを使うセンサチップはアンテナ付きで数ミリ程度の大きさしかない 出典:Infineon Technologies

 

 自動車側のシステムをさらに賢く(smart)するなら、園児を検出したら自動的にエアコンが入るようにしておくことも可能だ。

 ただし、レーダーセンサを製造できる半導体メーカーはInfineon Technologiesなどまだ限られている。しかし、その将来性を見込んで開発し始めている日本の半導体メーカーもある。ルネサスが最近買収を決めたインドのファブレス半導体企業がそれだ。センサからシステムを組んでスマホで結果を見られるところまでどの企業が早くやるか、楽しみだ。

  実は米国でも毎年10件くらい、クルマの中に幼児を置き去りにしてしまう事故が絶えない。このためレーダーセンサのクルマへの装着を義務付ける法律を定める議論を始めている。日本でも送迎バスだけではなく、車内に子供を置き去りにしてしまう事故が絶えない。レーダーセンサのようなハイテク機器は人の役に立つものであり、決してアクセサリではない。日本でもレーダーセンサの設置を義務付ける法律をさっさと制定すべきであろう。

 

SiCやGaNは次世代半導体ではない

(2022年8月20日 09:30)

最近、あるベテラン半導体技術者と話していて、SiCGaNGaO2など新しい化合物半導体を次世代半導体と呼ぶのはおかしいね、という話になった。これまで最初に開発された半導体トランジスタはGe(ゲルマニウム)で作られていた。それがSi(シリコン)に代わった。その次は何か、と騒がれてGaAs(ガリウムひ素)やGaP(ガリウム燐)などの化合物半導体が開発された。青色半導体の材料としてGaN(窒化ガリウム)が登場してきた。半導体材料を研究してきてようやく実用化できそうになってきたのがSiC(炭化シリコン)だ。 

RohmSiC.JPG

1 SiCウェーハ(2018年当時のローム製) 出典:筆者撮影

 

これらは化合物半導体ではあるが、当初は次世代半導体と呼ばれた。しかし、そう呼ぶにはふさわしくなかった。なぜならコスト的にも性能的にもシリコンLSIには適わなかったからだ。現在も次世代半導体も実はシリコンである。普遍的な半導体の価値は、集積化してさまざまな機能、システムをチップ上で実現できることだ。半導体トランジスタができてすぐ、IC(集積回路)ができた。しかもトランジスタ1個当たりのコストはほとんどゼロといえるほど少なくなったため、さまざまなシステムに使われるようになった。コストを安く作れる最高の技術がシリコンである。「神様の贈り物」とも言われる。

 かつてシリコンよりも高速性能が得られるということで、GaAsICを作ろうと研究開発が進んだ時代があった。実際、トランジスタ1個だけで比較するとSiよりも速い。これでICを作りコンピュータシステムを作ればSiよりも速いコンピュータができると期待された。1980年代は本気でGaAs ICが米国や日本で開発された。

 ところがモノにはならなかった。シリコンは微細化が進むと共に性能上がり、消費電力は下がっていく。ムーアの法則に従い、シリコンICの性能はどんどん上がり消費電力は下がり、トランジスタの単価は無視できるほど安くなった。しかし、GaAsはウェーハそのものが大きくできず、シリコンとは違い価格が高く、しかも微細化できなかった。微細化するためのリソグラフィ装置がシリコン用に限られ、GaAs用には使えなかった。GaAsSiよりも3世代くらい微細化が遅れた。シリコンだと90nm(0.09µm)ができた時に、GaAsでは0.25µmしか使えなかった。MOSMISなどの電界効果トランジスタ(FET)が微細化できなければ性能は上がらず消費電力は改善されない。

 のちに、GaAs ICの製品化を目指して開発していたVittesse Semiconductor社のCEOに聞いたことがある。なぜGaAsを止め、シリコンCMOS製品を提供するようになったのか。0.25µmまで微細化した時に、もはやシリコンのCMOSにはかなわなくなったことを悟ったからだという。この企業はシリコンCMOSのネットワークプロセッサやネットワークICの開発に切り替えた。

 当初GaAsSiに代わる次世代半導体ともてはやされた。しかし、集積化しても性能が出ず、しかもコストも下がらないために、Siに負けてしまったのである。GaAsGaP、あるいはそれらの化合物は半導体レーザーとして通信機器や光ファイバの送受信器として大量に使われるようになった。GaAsはシリコンではできない光を発射する半導体だからだ。LEDとしても使われ、光の3原色のRGB(赤・緑・青)の内、青だけが長い間できなかったが、GaN材料で明るい光を出せるように改良が進み、今はRGB全ての光を半導体LEDやレーザーが出せるようになった。

 また、トランジスタ単体や小規模のICなら今でもGaAsの性能はSiよりも高い。このため携帯電話やスマートフォンの送受信切り替えスイッチにはGaAsが使われている。

 GaNSiCは、高耐圧、大電流ではシリコンよりも性能が高く、電力効率は良い。そこで、パワー半導体に使おうというのが最近の動きである。確かにパワー半導体ではSiCGaNEMI(ノイズ)の大きさや使いにくさの面は残るが、シリコンのIGBTよりも性能は高い。しかも、SiIGBTトランジスタでは必要だったバルキーなコイルやコンデンサを小さくできる。しかし、集積化はSiよりもしにくく、コストは10倍も高い。しかもコストはなかなか下がらない。SiCは固いし、処理温度は2000度にもなり、適切な炉を安く入手できない。ただし、高くてもトランジスタ単体として使う用途にはSiIGBTを置き換える可能性はあるが、シリコンIC全体を取り替えるほどのメリットはない。

 SiCGaNGaO2などは新しい化合物半導体であり、単体や小規模のICではある程度成長するだろうが、ICの主流には決してなりえない。だから次世代半導体というべきではない。今や「半導体」という言葉には、数十億トランジスタを集積した「半導体IC」の意味を含んでいるからだ。

TSMCが使う最先端のFinFET技術は日本人の発明

(2022年8月10日 00:25)

 FinFETの発明が日本人って知ってるかい?

2年くらい続いた半導体不足がさまざまな産業で影響を与えたせいか、半導体の専門用語であるFinFETという言葉を専門家ではない方たちまでが使うようになってきた。このFinFETとは、半導体集積回路(IC)の基本トランジスタであるMOSFETの変形であり(図1)、性能や消費電力の点で、従来のプレーナ型MOSFETよりも優れたトランジスタだ。集積化しやすく、小さな面積でトランジスタを小型にできるため、高集積ICにも適している。トランジスタがまるで魚のヒレ(fin)の形をしているため、FinFETと名付けられた。

 

FinFET.png

1 FiFETの概念図 出典:久本大氏、日立製作所

 

 FinFETFETは電界効果トランジスタ(Field Effect Transistor)の略で、入力に電圧をかけると出力電流が流れるトランジスタ。トランジスタを最初に発明したベル研が開発したトランジスタはnpnとかpnpとか呼ばれるバイポーラトランジスタで、入力に電流を流すと出力に大きな電流が流れる。

現在、半導体といえばMOSFETを多数集積したICのことを指している。入力のゲートに電圧をかけられるように、半導体部分から絶縁されている。その構造がゲート電極(メタル:Metal)、絶縁膜(酸化膜:Oxide)、半導体(Semiconductor)というMOS構造をしているため、MOSFETと呼ばれている。

 MOSFETの最先端版であるFinFETは台湾のTSMCや韓国のSamsung、そして米国のIntelという3社だけが製造できる特殊な最先端のトランジスタだ。しかし、これを開発したのは、日本の日立製作所に現在も勤務する久本大(だい)さんである(図2)。特許も取得しているが、残念ながら発明したのが早すぎて、すでに切れている。

 

bioPhoto.png

2 久本大氏 日立製作所中央研究所に在籍していた時にFinFETを発明した 

 

 久本氏がFinFETを発明し、それを1989年の国際電子デバイス会議(IEDM)で、学会発表した時は、DELTAトランジスタと呼んでいた。Fully Depleted Lean-Channel Transistorを略してそう命名した。しかし、彼が米国カリフォルニア大学バークレイ校(University of California, Berkeley)に研究員として1990年代に共同研究していた時にFinFETの開発を進め、彼と共同開発していたChenming Hu教授がFinFETと名付けた。同じような頃、Intelはトライゲート(TriGate)トランジスタと呼んでいたが、結局FinFETの名前が定着した。

 Intelの呼び名は、FinFETが半導体を3方向からゲートで囲んでしまうことに起因している。3方向から囲むとリーク電流が流れにくくなり、消費電力の削減効果は大きい。また、一気に流れるため、FinFETは理想的なデジタルスイッチに近い。

 久本氏は現在、日立製作所研究開発グループのサステナビリティ研究統括本部電動化イノベーションセンタの技術顧問である。ワイドギャップ半導体であるSiCの新しいMOSFETを日立が発表した後に同社の研究所を取材したした時に、対応した若手エンジニアから久本氏の名前が上がり、部下が尊敬の念を持っていることがうかがえた。また、別の取材でも久本氏の名前が若手から上り、やはり若いエンジニアから慕われていることを強く感じた。

ただ日立製作所は現在、パワー半導体しか手掛けておらず、ICに関してはルネサスが関係しているが、ルネサスの資本の3.47%しか持っていない。半導体が成長産業であることを台湾だけではなく、米国、欧州でも力を入れているのにもかかわらず、日本の総合電機がその重要性を認識していないことは極めて残念である。おそらく日本の産業界全体にとっても半導体という成長産業の軌道に乗れないことは、経済成長から逸脱してきた過去と無縁ではないだろう。

経済安全保障の観点からは製造だけを強化してもユーザーが日本にいなければ海外を開拓していかざるを得ない。残念なことに別の総合電機のトップは、半導体は外から買って来ればよく、自社で作るものではない、という認識を未だに持っている。半導体製造装置や材料の業界は、日本のユーザーではなく海外のユーザーにすぐ転換できたから、いまだに強い。日本の半導体は総合電機の親会社がいつまでも支配している状況だったため、世界の顧客と共同開発するという体制を取れなかった。

幸運にも最近のルネサスは買収したシリコンバレー企業のリーダーたちをルネサスの経営陣に取り込み、共同運営するという形のグローバル企業へと脱皮したことで、海外からの注文、デザインイン(共同開発設計)を多数取り込むことができ、2022年の2Q(第2四半期)には前年同期比73.1%増という驚異的な成長を遂げた。シャープを台湾の鴻海精密工業が経営してから復活したことと無縁ではない。ルネサスのやり方は、ニッポン半導体がとるべき経営手法の一つとして、参考になるかもしれない。

 

日米経済版2+2に見える米国のプレッシャー

(2022年7月30日 15:19)

 米ワシントンで外務・経済閣僚協議会である「経済版2+2」が初会合を開き、次世代半導体の量産への協力を進めることで日米が合意した。まるで日米対等な立場での経済協定のように描かれているが、実情は全く違う。完全な米国主導だ。

 

twoplustwo.png

1 729日の経済版2+2 出典:外務省ホームページ

 

ITサービスからIT機器、半導体製品、ファブレス設計、設計ツール、半導体製造、製造装置、材料という一連の半導体のサプライチェーンの中で、米国が弱いのは半導体製造と材料だけ。残りは圧倒的に強い。米国は半導体製品5割のシェアを持ち(日本は1割以下)、ITサービスにはGAFAがいる。対して日本は半導体製造装置と材料だけが強いものの、残りは圧倒的に弱い。この関係を理解していれば、今回の協定は米国主導であることがわかる。

米国の言う経済安全保障とは、半導体製造だけを台湾に任せているという状況から何とかして米国へ戻し、半導体のエコシステムを米国内で完結したい、ということである。米国はIntelGlobalFoundriesGF)の半導体製造技術の遅れを危惧する声が防衛関係にある。このため、米国内でファウンドリビジネスを促進すると声を出した、ミネソタ州を拠点とするSkywater Technologyに対して、国防総省は(DoD)はチップレットやパッケージング技術でカバーする。Skywaterはやっと90nmノードのプロセスの開発キットを用意したばかりだが、これでも勝負できるのだ。

しかし、ここにきて527億ドルの支援を両院議会でやっと決議した。この動きをにらんでIntelPat Gelsinger CEOがアリゾナだけではなくオハイオ州に11兆円の投資をはじめ、欧州にも幅広く半導体工場や研究所を設立することを矢継ぎ早に発表した。これも欧州で同様なCHIPS法案が決まり巨額の補助金を用意したからだ。BoschInfineonも新工場を稼働させたほか、この法案を当てにしたSTMicroelectronicsGFと組んだ工場新設へと動き出した。欧州は、いまは日本と同じ世界シェア10%しかないが、これを2030年までに20%に引き上げようという明確な目標を掲げている。

米国は保険として、日本でもファウンドリや半導体製造を強化してほしい、ということが本音。軍事同盟国である日米が共に半導体製造を強化できれば、万が一、台湾が中国に侵略されても重要な半導体を確保できる。そのような体制を築きたいのが米国だ。

こういった世界の動きに対して、日本でも日本政府の支援を当てにして、TSMCの熊本誘致だけではなく、ルネサスの古い甲府工場をリニューアルし直して300mmラインの新設や、キオクシアがWestern Digitalと共同運営している四日市工場への巨額の投資も始まっている。

ただ、日本が世界と同等に戦っている半導体企業はこれらに加え、ソニーの3社しかない。これではなかなか日本の半導体産業の世界シェアを上げることは難しい。そこで、ファブレス企業やファウンドリ企業もこれから立ち上げれるように支援すべきだろう。それも3nm2nmなどの微細なプロセスノードを狙うのではなく、40nmや、市場の広い28nmプロセスのファウンドリから始めてもよい。そして半導体を理解できるようなICユーザーがいなくなった今(かつては総合電機がユーザーだった)、システムを差別化するのはソフトウエアだけではなく半導体チップ(ハードウエア)でもあることを認識させる活動も必要だろう。

例えばクルマは、今後ソフトウエア-デファインド・ビークル(Software-Defined Vehicle)になるといわれており、これを実現するハードウエアこそ半導体ICである。これって実はクルマのコンピュータ化のこと。コンピュータはSoftware-defined machine、つまりソフトウエアで機能を自由に変えられるマシンだからだ。コンピュータシステムの機能の差別化はソフトウエアであるが、実は性能の差別化は半導体によるところが大きい。

となると、日本の半導体を強くするためには半導体を購入するIT機器メーカー、その先にいるITサービスプロバイダも活躍してくれなければできない。さもなければ、日本で作った半導体チップを買ってくれる外国企業と積極的にディスカッションし売り込める人材を育成する必要がある。半導体がIT3大要素(残りの二つはコンピュータと通信)の一つになった以上、ITをもっと活性化させることが半導体立国への復活につながる。ITはソフトだけではなくハードも重要であるからこそ、両方を強くする教育、すなわちSTEMScience, Technology, Engineering, Mathematics)教育を充実させることが半導体やIT復活させ日本の復活のカギとなる。

「微分積分なんになる」、「三角関数なんになる」というような政治家が国の中枢部にいるようでは、未来は全く開けない。STEM教育の充実こそ、将来の量子コンピュータや量子暗号、セキュリティ、バイオテクノロジー、ロボティックス、AI、自律化、メタバースなどの基礎的な学問なのである。これらの技術を使えばデジタルトランスフォーメーションやスマートシティ、スマート化の原動力となる。

ファブレスIC半導体は年率13%の高成長産業

(2022年7月 8日 12:14)
 最近市場調査会社のIC Insightsが発表したグラフを見る限り、ファブレスIC半導体は年率平均13%成長というとんでもない高成長産業であることがわかった。2003年から2021年まで19年間に渡るIC半導体産業の成長率の推移では、ファブレスIC半導体はこの間マイナス成長した年はわずか2年しかない。これに対して、工場を持ち製品ブランドも持つIDM(設計と製造の両方を行う半導体企業)の成長率は、山あり谷ありで、平均6.8%のプラス成長だ。

FigFabless.jpg

1 ファブレス半導体は大きく沈んだことがない超優良な成長産業 出典:IC Insights


 それでも、IC半導体は大きな成長産業である。しかも現在、60兆円を超す巨大産業でもある。この巨大産業が年率平均10%で成長し続けているのだ。この規模で高成長を続ける産業は他にはない。

  中でも工場を持たない、設計だけのファブレス半導体の方が成長率は高い。年率平均13%というとてもなく高成長の産業である。この「おいしい」ファブレス半導体産業に日本は長い間世界の上位10社に一度も入ったことがない。この分野は米国が圧倒的に強い。しかし台湾も頑張っている。特にMediaTek2021年には第4位にランクされている176億ドル(約2兆円)企業だ。さらにNovatekRealtekHimaxの台湾勢もランクインしている。トップ10社の内、米国6社、台湾4社が占めている。

  この結果、2021年にIC全体5105億ドルに占めるファブレスIC半導体の割合は34.8%1777億ドルと1/3以上を占めるようになった。ファブレスの勢いに残念ながら、わが日本は全く付いていっていない。

 

台湾は国策でファブレスを強化


 台湾がここまでファブレスに強くなった理由の一つは、国(注)を挙げてファブレスを強化したからだ。1990年代半ばにTSMCUMCはファウンドリで着実にビジネス実績を挙げてきた。中国でもファウンドリによるブームが起き始めていた。製造部門がやがて中国に移るかもしれないため、台湾はファブレス設計を強化しておこうと政府は考えたのである。

  それを受けて1997年に設立されたMediaTekは当初はCD-ROMドライブ用の読み取りICで大成功を収めた。日本のCD-ROMチップを手掛けた半導体メーカーが特定の規格の読み取りICしか生産しなかったことに対して、MediaTekの読み取りICCD-ROM装置が持つ全ての規格をカバーした。汎用化させることによって、MediaTekICと三洋電機の光ピックアップさえあれば誰でもCD-ROMを作れると言われるようになった。余談だが、三洋のレーザーピックアップはその当時定評があった。

  MediaTekの優れた製品戦略は、その後も汎用性のあるICを開発するという姿勢を示し続けた。CD-ROMの延長で、DVDBlu-RayレコーダやHDTV用のICなども設計したが、大きく成長させたのは、携帯電話機のモデムチップ、さらにはアプリケーションプロセッサだった。特に3G4Gのスマートフォン向けチップで世界的なファブレス半導体メーカーとなった。今や5GQualcommに対抗できるのはMediaTekしかいない。

  日本は、汎用性のあるチップ設計が弱い。特定ユーザー向けのASICチップは言われる通りに作るだけなので強かったが、汎用ユーザー向けに最大公約数の仕様を見つけるという作業ができなかった。こういったマーケティング作業に力を注いでこなかった日本における現在のファブレスは、特定企業向けのICという、いわゆる下請け体質から抜けきっていない。だから世界的な企業になり切れない。特定企業向けではなく、特定用途向けのIC設計を日本はもっと強くしなければならないが、経営者の姿勢にも問題が多く、なかなか特定用途向けの設計は苦手である。だが、MediaTekの考え方を日本の経営者が謙虚に学び実行するという姿勢を持てば、実現できないことではない。

 

 

注)日本政府は台湾を国として認めていないが、ここではあえて国(中華民国)と表現させてもらう。中国は一度も台湾を支配したことのない国だからである。台湾はかつて「流求」あるいは「瑠求」と呼ばれていた(筆者は北京の歴史博物館で確認した)。沖縄がかつて琉球王国であったが、「流求」や「瑠求」はまさに「りゅうきゅう」と読める。琉球王国は、日本と中国の両方に貢物を納めていたという歴史があるが、中国が台湾、すなわち「流求」を支配したことは一度もない。このため、中華人民共和国が台湾を中国の一部と呼ぶことは理に適っていない。

いつまでたっても成長しない中国の半導体産業

(2022年5月21日 09:07)

 中国政府が何兆円を投資しても半導体製品のシェアがちっとも高まっていない。中国内の半導体IC市場に対して、中国生産IC製品の市場シェアは2012年に12.7%しかなかったのに10年間でわずか16.7%に留まっている(図1)。中国政府が旗を振る「中国製造2025」計画では2025年には70%シェアという目標だが、どう考えても達成は無理だろう。なにせ10年で4%ポイントも上がらなかったのに今年も含めて残りの4年で54%ポイントも上げなければならないのだから。

中国半導体が盛り上がらない理由.jpg

1 中国国内のIC市場と中国製半導体ICの販売額 出典:IC Insights


 なぜ中国政府は半導体に力を入れても企業は世界レベルにならないのか。その答えを求める前に、中国政府はなぜ半導体産業を盛り上げようとしているのか。その答えは図1を見ればすぐわかる。中国国内で使う半導体ICの市場規模は、2021年に1870億ドルであったが、中国産のICはその16.7%312億ドルしかない。つまり、中国は1870-3121558億ドル分(20.2兆円)のIC製品を輸入しているのである。逆に言えば、半導体IC製品のために20兆円もの外貨が流出した。それもグラフを見る限り、いつまでも毎年その程度のドルが流出することになる。これは中国共産党政府にとっては容認できない。だから内部で作れ、という訳だ。

 共産党政府はそのために国家ファンドを作り、年間数兆円相当の投資を行ってきた。輸入超過の半導体産業による外貨流出を防ぎたい中国政府は、外国(韓国Samsungや台湾のTSMCなど)の大手半導体に対しても大歓迎で受け入れている。中国生産の312億ドルの内60%以上が外資による生産である。中国の地場企業のシェアは中国市場の6.6%しかない。共産党政府にとっては半導体を国内で生産したくでもできないのが現状だ。

 その理由の一つとして、肝心のエンジニアが中国内にはいない。そこで、台湾、韓国、日本から半導体関係者を大量に採用している。中国人エンジニアが自立するまでのつなぎとして、例えば台湾から3000名以上を採用しているという。ただ、政治的に東西対立が目立つと、人材確保はますます困難になる。また台湾では経済スパイ法を成立させ、実質的に技術者の中国行きを防ぐ法案を2022520日に成立させた。

 中国の学生は半導体産業にどのくらい来るのか、業界関係者に質問したことがあるが、残念ながら学生はアリババや百度、テンセントなどのインターネット企業にばかり行く、という。半導体にはさっぱり来ない、と嘆く。筆者は2000年ころにSMICが起業され中国で半導体製造ブームがやってきた頃、地元の半導体企業を10社ほど取材したことがある。最も苦労したことは人材確保であった。「中国の若い学生は安易に金儲けできるところにすぐ行く」という声を至る所で聞いた。この状況は今でも変わっていない。先ほどの中国における業界関係者の言葉は現在の発言だ。

 半導体製造技術では、固体物理学や量子力学、プラズマ化学、光化学、光学、熱力学、もちろんニュートン力学、電子回路、電磁気学、IT、データ解析、ソフトウエア、コンピュータ科学、数学、通信工学など幅広いさまざまな勉強が必要である。簡単にちゃちゃっと習得できる技術ではない。「三角関数なんになる」という愚かな知識人や政治家が重要な産業を理解できないのは日本だけではない。

 米国は実は、半導体産業では圧倒的に強いのにもかかわらず、「中国の脅威」を議会や世の中に訴求することで、巨額の補助金を出そうとしている。日本は本当に半導体産業をちゃんとしないと中国よりもダメになるリスクは残っていることをもっと自覚すべきであろう。円安、輸入超過、経済没落の道筋は他人ごとではない。

 

日本の半導体ICメーカーのシェアは2年連続6%

(2022年4月 9日 15:12)

2021年の世界半導体ICメーカーの国別市場シェアが発表された。これによると1位米国54%2位韓国22%3位台湾9%4位は欧州と日本が6%6位が中国の4%、となった(図1)。これは米市場調査会社のIC Insightsが発表したもの。ここから見えることは米国が今でも世界ナンバーワンの半導体王国であることだ。

 

FigICinsights1.jpg

1 2021年の世界半導体ICメーカーの市場シェア 出典:IC Insights

 

 最近、米国は議会を動かして半導体製造に関する予算520億ドルの議案で、下院を通過させた。米国は圧倒的に半導体産業では強いのにもかかわらず、中国が躍進しており、脅威になると米国世論を動かして予算獲得に動いた。なぜか。半導体のサプライチェーンを構成する上で圧倒的に強い部分は目をつぶり、弱い製造技術を何とかしようと動いたからだ。半導体産業のサプライチェーンは図2のようになる。

TableSupplyChain.jpg

 

2 半導体ICのサプライチェーンの全体像 米国は製造を除き圧倒的に強い 出典:筆者作成

 

 米国が弱いのは、ICファウンドリとOSATだけであり、製造を強化すれば盤石となる。これに対して日本は、IC製造装置と材料だけは強いが、半導体メーカーもユーザーもITサービス業者も全て弱い。半導体だけ強くしても買ってくれる企業が日本にいない。ITサービスからIT機器メーカーも強くしなければ日本全体が強くならない。

 逆になぜIC製造装置とIC材料メーカーが強いのか。かつてお客であった日本の半導体ICメーカーを諦めて、さっさと海外のICメーカーに売り込んできたからだ。例えば世界レベルの東京エレクトロンの海外売上比率は85%にも及び、ICテスターのアドバンテストのそれは92%以上にもなる。つまり日本の強い産業は海外で売り込むことに成功したことで大きく成長してきたのである。

 一方、日本のICメーカーは、まだ内弁慶な所がある。確かにキオクシアやソニーセミコンダクタソリューションズはAppleiPhoneに大量に使われるようになってから大きく伸びた。しかし、これはApple側から寄ってきたことによる。AppleはライバルSamsungの半導体や液晶製品を使いたくなかったため、NANDフラッシュメモリはキオクシア、CMOSイメージセンサはソニーから購入している。また中国の華為は10年ほど前に積極的に日本にやってきて部品の調達を始めた。その時にキオクシア、ソニーの顧客になった。つまりどちらも相手から寄ってきたケースだ。ご存知のように米中貿易戦争で華為へ部品を納入できなくなった後、キオクシアもソニーも華為以外の中国の小米やOppoVivoなどスマホの世界的メーカーへ納入するチャンスはあったのに逃した。このため成長率が小さくなった。

 日本の半導体ICメーカーが成長するためには、海外の顧客を積極的に獲得しなければならない。ルネサスが2021年に前年比48%も成長できたのは、買収した米国企業のマネージャーを経営陣として迎え入れたことが大きい。特にシリコンバレーに拠点を持つIDT出身のSailesh Chittipeddi氏をIoT・インフラ事業本部のトップに据えた。ルネサスは大きく分けて車載事業と、IoT・インフラ事業の2本柱だが、クルマは日本にユーザーがたくさんいる上に日本の強い分野であるからトップは日本人の片岡健氏だが、IoT・インフラ事業本部の4名の役員は全て外国人で構成している。社員全体で「日本人は少数民族になりました」という声も聞いた。

 彼らを経営陣に加えたことで、海外の顧客を獲得することは極めて容易になった。かつては全く手の届かなかったインド市場でも顧客を獲得しデザインインを次々と始めている。また、日本はアナログ半導体が強いと言われるが、実はイノベーティブなアナログ回路は米国の方が圧倒的に強い。IDTに加え、Dialog SemiconductorはパワーマネジメントICLEDドライバICなどアナログ回路に長けており、Appleが惚れ込んで採用した白い四角い電源アダプタはDialog製品が省エネだったから生まれた。さらにDialogが買収したSilegoは小規模のFPGA製品ラインを持つ。IDTはワイヤレス充電用ICに強い。ルネサスはWi-FiICも手に入れ、もうグローバル企業への脱皮が終わりつつある。

 新顧客の開拓にシリコンバレーをフル活用し、アイデアを共有し日本でも展開することも始めている。ルネサスは、もうかつてのダメルネサスではない。

 日本の半導体がこれから強くなるためには、ルネサス流のやり方は一つの参考事例として考えてみる価値はある。シリコンバレーのアイデアを知り、理解し、それを実践することでシリコンバレーの顧客を獲得し、さらにそこから世界展開へと持っていく。日本のITは全く弱いからこそ、見切りをつけてさっさと海外の顧客と一緒に未来の製品の話し合いを始めてはどうだろうか。

過半導体って何だろうか?

(2022年4月 1日 16:32)

京都工繊大学教授の小林和淑さんから「過半導体」という言葉を広めてほしいと言われた。この半導体不足のご時世に「過ぎたる半導体」とは何だろうか、と思った。同氏に問い合わせてみると、コンセントに差す電気製品は全て半導体を使っているという意味だという。半導体がいっぱいあるということを表している。確かに、コンセントや電池を使う電化製品にはほぼ100%半導体が入っている。

 

小林和淑教授.jpg

1 京都工繊大学教授の小林和淑氏

 

それだけではない。RF-IDのように電池も電源もないICチップでさえある。電源なしで半導体ICは動く、と言うと誤解されやすいので、一応ざっと説明しておくと、RF-IDだって電池はないが電源回路はある。RF-IDのリーダー(読み取り機)、例えばJRICカードである「スイカ」は、改札口の上の丸い模様の位置にカードを置くと読み取ることができる。丸い模様の位置からカードにRF(高周波)電波を発射し、カード側で高周波の電波を受け取り、その電波のエネルギー(交流)を整流し直流へ変換し直流電源とする。その直流電源で小さな主回路を動作させ、カード内に蓄積された金額情報と日時を満たしているかどうかをチェックし、格納されている金額以内などであれば、改札のバーが開く、という仕組みである。極わずかのエネルギーだけで動作できるため、電池もコンセントも要らない。「数百円の商品もRF-IDタグで管理できる時代に」で書いたユニクロの商品タグもまさにRF-IDである。

実にいろいろな所に半導体ICチップが使われている。産業としても実に日本に適した産業なのに残念ながら総合電機の経営者は半導体を手放してしまった。しかも40nm以下は設計も製造も開発してはいけない、と上司から言われたエンジニアも少なくない。半導体産業の重要性を認識も理解も経営者ができなかったために今日の悲劇を招いた。悲劇とは、世界の半導体産業が成長し続けているのにもかかわらず、日本だけが成長していない、という経済のGDPと全く同じ動きを半導体産業がしていることである。

しかし、今からでも遅くはない。半導体産業はこの先20年も30年も成長し続ける産業だからこそ、政府が何とかしようという考えは評価できる。半導体が盛んになり雇用が増えれば経済的にも豊かになれるからだ。成長し続ける理由は三つ:(1)ムーアの法則は2次元から3次元へと形を変えて続く、(2)新技術が今も出現し続けているため、数年後には量産が始まる、(3)人間の知恵であるソフトウエアをチップに埋め込むことができる。この三つに限界はまだ見えていない。

世界が成長し続けているのに日本だけが成長していない。日本しか見ていなければ、これが普通だと思ってしまう。一方、成長している世界から見ると日本は時計が止まっているように見える。例えば韓国のテレビ局の記者から、「新型コロナではっきりしたことですが、なぜ日本の官庁や企業はこんなにITが遅れているのですか?」と聞かれた。日本も世界と一緒に成長していかなければ、給料が増えるどころか減りながら物価が上がるという超円安の状況になりかねない。インフレでお金の価値が下がりながら給料は増えないのである。

すでにその兆候は見られる。シリコンバレーの一角であるサンフランシスコベイエリアでは、年収1200万円が低所得者層と言われている。決して冗談ではない。日本が成長して世界と競争できる社会に変えていかなければ本当に没落していく。