ブランドで勝負し始めた台湾企業

(2017年6月18日 12:51)

 台湾はこれまで、ブランドをあまり前面に押し出さない「黒子ビジネス」が得意だ。例えば鴻海精密工業は、アップルのiPhoneiPadを量産してきた。TSMCは世界の半導体の製造を一手に引き受ける請負企業(ファウンドリ)だ。パソコンでさえ、エイサーやマイタックはかつて、HPやデル、コンパックなど米国パソコンメーカーの製品を製造してきた。つまりブランドよりも実を取る黒子ビジネスを手掛けてきた。

  しかし最近は、エイサーやASUS(エイスース)、HTCなど独自ブランドの製品を出す世界的なブランド企業も登場してきた。元々ASUSBenQなどの企業はエイサーから分離独立した企業だ。616日には東京駅近くのKitteビルで「2017 Taiwan Excellence in Tokyo」が開催され(図1)、エイサーやASUSなどのIT/エレクトロニクス企業に加え、楽器のサキソフォーンでは世界市場シェアの1/3を握るリエンチェン・サキソフォーン社、椅子にもなる折り畳み式の杖を設計製造するTaDaチェア社などが製品を展示した。女優の田中千絵さんも応援プレゼンに駆け付けた。

DSCN5642.JPG

  図1 台湾で活躍する女優の田中千絵さん


 「台湾エクセレンス」とは、品質とデザイン、研究開発、マーケティングという4つの項目すべてを満たす優秀製品の認定書のようなもの。全て台湾ブランドを全面的に押し出す製品群だ。日本の認定ならたいてい、品質と性能や消費電力などのスペックを満たす製品や技術などを表彰したがるが、マーケティングという市場に当てはまっているかどうかという認定が台湾らしい。というのは台湾ビジネスに限らず世界のビジネスでは、まず受け入れられる価格の製品にするための技術を開発するからだ。日本はまず性能を優先し、時にはコストを度外視しても性能や技術を優先することもある。

  台湾のビジネスはこれまでブランドにこだわらず、実を取る作戦で、パソコンビジネスやスマートフォンビジネス、半導体ビジネスを成長させてきた。すなわち、これまでの黒子ビジネスを20年以上やってきてノウハウを取得し、高度な製造力を身に着けてきた。これによって付加価値をつけられるようになった。しかも収益率(利益率)の高い企業が多い。

  また東南アジア市場(アセアン)では、台湾企業が25000社も進出しており、ベトナムには7000社も進出しているという。つまり海外でもその存在が知られるようになりつつある。

  TAITRA(台湾貿易センター)の戦略マーケティング処 処長の陳英顯氏(図1)は、これまで培ってきたハードウエアとソフトウエアを合わせたソリューション提案ができるほどになり、収益率の高い企業も増えてきた、ときれいな日本語で言う。今のIT・エレクトロニクスはまさにソリューション提案へと流れているため、世界のトレンドに乗った動きである。 

DSCN5605.JPG

 図2  TAITRA戦略マーケティング処 処長の陳英顯氏

 

 台湾は、海外企業とコラボしながら発展してきた企業が多い。シャープを買収した鴻海精密工業は元々、アップルのコンピュータ「マック」のキーボードやディスプレイケーブルなどを製造してきた企業である。1990年のはじめに早くも中国に進出した。人件費が安く、言葉が共通しているということで中国での生産に取り組んできた。アップル社の結びつきはこの頃から強かった。今やiPhoneiPadなどの生産を一手に引き受けており、東芝のNANDフラッシュの直接の顧客でもある。今のところ、黒字ビジネスに徹しており、ブランディング製品にはシャープの名前を利用する。

  日本では、黒子ビジネスは少ない。かつての三洋電機くらいなものだ。デジカメでは三洋が製造したオリンパスブランドの製品は一時トップを行っていたことがある。一般的には社名を隠す日本メーカーは極めて少ない。黒子ビジネスを嫌う傾向が強いため、ビジネスチャンスを失ったことも多い。例えば、半導体の製造だけを受け持つファウンドリビジネスである。製造が得意な日本の半導体企業は、製造に特化するファウンドリビジネスに参入できなかった。水平分業という世界の流れに乗らず、いつまでも垂直統合に固執したため、ファウンドリだけのビジネスのチャンスを失った。

  台湾ビジネスは、格好よりも実を取る。黒子ビジネスを厭わずビジネスに徹してきた。ブランドを表面に出さなくても鴻海やTSMCのような製造専門の世界的な企業に成長したところがある。

  今回の台湾エクセレンスはブランドを全面的に押し出す作戦であり、これまでの台湾のビジネス戦略とは明らかに違う。消費者向けの製品を作っているエイサーやASUSなどはブランドを重視する。さらに電動自転車や精密機械も設計・製造できる力をつけてきたようだ。台湾がブランド力を確立するには、低コストで生産する製造力だけではなく、ソリューション提案もさることながら、さらにビジネスモデルの創出もできれば鬼に金棒となる。そのためには日本の製造業よりはITベンチャーとのコラボの方が、世界的にはビジネスを成長させるための面白い組み合わせになる可能性がある。

2017/06/18

   

本来のLabVIEWの姿を取り戻すNXG版

(2017年6月 5日 22:23)

電子システムをテストするのに回路ブロックやテスト波形などをビジュアルに表示するためのツールであるLabVIEW(ラボビューと発音)は、グラフィカルに記述でき、プログラミング言語を知らない人間でも回路を描きテストすることができた。システムが徐々に複雑になり、カスタマイズが必要になってくると、バイナリコードなどを使って自分でプログラムしなければならなくなってきた。LabVIEWは次第にプログラムになじんでいる人しか使わないツールとなってきた。そのようなツールを全面的に見直し、今後の基本ツールとして使うべきLabVIEW NXG 1.0を、ナショナルインスツルメンツ(National Instruments)社がリリースした。

  LabVIEWが誕生したのは1986年(図1)。30年たち、今年は31年目に当たる。当時はこのビジュアルなソフトを載せるパソコンは、アップル社のマッキントッシュしかなかった。マックが欲しくてLabVIEWを求めたユーザーもいた、と開発者のジェフ・コドスキー氏は冗談交じりに語っている。その間、さまざまな工夫を経て進化してきた。中でもFPGAのプログラミングをLabVIEW上で可能にするなどの革新技術もあった。

Fig1LabVIEW.png

 

1 最初のLabVIEWはアップルのパソコン「マッキントッシュ」に載せた

 

 元々、測定器は、デバイスやシステムの性能や機能が設計通りに満たされているかを調べる道具である。古くはウィリアム・ヒューレットとデビッド・パッカードの二人が自宅のガレージでオシロスコープを設計製造したことから、測定器ビジネスが盛んになり、シリコンバレーの元祖となった。二人の姓をとって始めたヒューレット・パッカード社は今やコンピュータメーカーとして君臨するようになった。今でもHPからスピンオフした、アジレントテクノロジー、さらに本来の測定器を製造するキーサイトテクノロジーへとスピンオフして現在に至っている。

  測定器には、時間に対して電圧波形の変化を見るオシロスコープから、周波数に対して電圧の変化を見るスペクトラムアナライザ、トランジスタの直流特性を見るカーブトレーサ、電磁波の反射・増幅などを見るネットワークアナライザ、電圧信号発生器、電源などさまざまな装置がある。一つのシステムの性能・機能を調べるには、一つの測定器だけはなく、何台も使ってそれぞれの特性を調べる必要がある。このためエンジニアの机の上は測定器の山で積みあがってしまっている。測定器同士をつなぐ配線も複雑になり、フォークにまとわりつくスパゲッティのようだといった表現も使うほどだ。

  こんな状況を打破するため、ソフトウエアとプラットフォーム化で1台の装置(シャーシー)とパソコンで、さまざまな測定をしようとしたのが、NIである。測定ハードウエアを当時はバーチャルインスツルメンツと呼んだが、プラットフォーム化した測定器であり、現実の装置なのでバーチャルという呼び名はふさわしくないことから、いつの間にか、バーチャルという言葉は使われなくなった。ハードウエアは1台とPCがあれば様々な測定ができる。その測定器ハードウエアシャーシとパソコンとは当初GP-IBで接続されていたが、今ではPCIバスを経てPCI Expressバスを使うまでになった。

  パソコンは、測定器のディスプレイとして使ったり、シミュレーションすべき回路や測定項目、手順を示したりするのにも使う。こうなると、ソフトウエアを使って、システムの回路を示し、その回路の出力波形をシミュレーションでディスプレイに出すこともできるようになる。こういった考えがLabVIEWにある。当初は、ビジネスマンや財務・経理部門などが標準として使うエクセルのようなソフトウエアを、エンジニアに提供しようと考えたと、LabVIEWの父と呼ばれるNI社の共同創業者でありフェローでもあるジェフ・コドスキー氏(図2)は述懐する。

 

FigKodosky.jpg

2 LabVIEWの父と呼ばれる、Jeff Kodosky(中央)

  

 そのLabVIEWは、本来の「グラフィカル」という表現力をベースにしながら様々な機能アップにより進化させてきた。例えば、FPGALabVIEWでプログラムできるグラフィカル機能を追加してきた。LabVIEW 2016ではチャンネルワイヤーと呼ぶ、配線の引き回しを簡単に済ませる方法を提示した。このイベントでは、もう一つのグラフィカルツールであるLabVIEW 2017も発表した。LabVIEW 2017LabVIEW NXG1.0とは機能が全く同じだという。ただし、2017は従来通りバイナリコードで作成、NXG 1.0XMLで記述したという。

  二つのLabVIEWを発表したのは、今がLabVIEWにとって過渡期にあるからだとしている。これまでのLabVIEWに親しんできた設計者は、これまでの延長にあるツールLabVIEW 2017の方がなじむ。しかし、コードを書くことに興味のないエンジニアや研究者や、これまであまり使ったことのないエンジニアには、LabVIEW NXG 1.0版を勧めるという。

  今後は、LabVIEW NXGの進化の方がより進むだろうとする。それはNXGの方が機能追加を容易に拡張しやすいためだとしている。LabVIEW NXG 1.0に続き、NXG 2.0を今年の後半に出してゆく予定である。

2017/06/06

   

ARMプロセッサのWindows10パソコンが現実に

(2017年6月 3日 21:21)

パソコンでは、Wintelと言われるくらい、インテルとマイクロソフトとの結びつきが強かった。またAMDのようにIntel互換機を作る企業はいても、市場シェアはインテルが圧倒していた。このような市場にインテルではない、ARMCPUコアを集積したパソコンが登場するのである。しかもWindows 10OSを搭載している。ARMは、ソフトバンクが3兆円強を投資して買収した英国ケンブリッジを本拠とするCPUコア設計会社。

 これは、5月末にComputex Taipei において、マイクロソフトとクアルコムが共同で提供するモバイルパソコンについて発表したもの。クアルコムのSnapdragon 835ARMアーキテクチャをベースにしており、x86アーキテクチャ以外のCPUがパソコンに載るのはこれが初めて。Windows 10で使う代表的なアプリケーション、例えばマイクロソフトのオフィスなどをサポートしている。

Fig1snapdragon.png

図1 クアルコムのSnapdragon  出典:Qualcomm Inc.


このアーキテクチャのパソコンは、ASUSとヒューレット-パッカード(HP)、レノボのパソコン大手3社から入手可能で、ファンレスのモバイルPCとなる。それはプロセッサとなるSnapdragon 83510nmプロセスで設計し、これまでの設計より消費電力が25%低く、35%も小さいからだ。その分バッテリ動作時間が長くなり、終日、常時接続・常時オン動作が可能になるという。10nmプロセスは、これまでのTSMCではなくサムスンがファウンドリで製造したようだ。

  クアルコムのSnapdragon 835には、ARMv8-A64ビットアーキテクチャCortex-A73ベースとみられるKryo 280 CPUコアを中心に、GPUAdreno 540)、DSPHexagon 682)、ISPSpectra 180)、x16 Gigabit LTEモデムなどを集積している。ダウンリンクは最大1Gbpsをサポートしている。Wi-Fi接続では、802.11acに準拠し2×2MIMOに対応している。

  レノボのPCおよびスマートデバイス、民生部門のジェネラルマネージャー兼VPのジェフ・メレディス氏のコメントをクアルコムは掲載し、「今日のパソコンユーザーは、バッテリ寿命をより長く求めてきており、いつでもどこでも使える能力も必要としています。加えて、これまでのノートパソコンよりも軽くて持ちやすいものが求められています」と述べている。今回のマイクロソフトとクアルコムテクノロジーズ (Qualcomm Inc.の子会社)の共同開発技術は、パソコンの未来を変える新しいクラスのデバイスだと絶賛し、ワクワクしていると語っている。

  Snapdragon 835CPU2.45GHzで動作し、DSPはセンサハブの役割を持つ。ISP(画像信号プロセッサ)は2個集積され、カメラの解像度によって使い分ける。デュアルのカメラでは最大1600万画素だが、カメラ1台分だと最大3200画素まで処理できる。GPUAPIは、OpenGL ES3.2OpenCL 2.0フル、VulkanDX12をサポートしている。Wi-Fi802.11a/ad/n/a/b/gをサポートしており、その周波数帯も2.4GHz5GHz60GHzと多岐にわたる。最大速度は867MbpsBluetooth 5.0GPS/GNSSもサポートしている。

  実は、クアルコムは昨年12月にマイクロソフトとノートパソコンとタブレットの開発で技術提携を結んでいた。さらにこの3月にもHPC(高性能コンピューティング)でも両社は提携を結んでいる。クアルコムのSnapdragonCPUコアはARMをベースにしたものだけに、ARMコアがスマートフォンから、タブレットやパソコン、さらにはスーパーコンピュータやサーバ向けなどのチップにも使われていきそうだ。

  SnapdragonCPUコアだけではなく、グラフィックスプロセッサやメモリも集積しており、マルチコアのような拡張性が優れている。CPUとメモリはできるだけ近い位置に置きメモリのバンド幅を1024ビットや2048ビットなどへと広げることで高速化を図れるため、1チップ上に集積するメリットはハイエンドコンピュータでも大きい。さらにクアルコムはFPGAのザイリンクスとも技術提携しているため、さらに高速化を図るとすれば、ソフトウエアではなくFPGAのハードウエア回路で演算を実行できる。クアルコムはハイエンドコンピュータにも進出するのは間違いない。ARMCPUコアはますます高速化が求められることになる。

                               (2017/06/03

   

テクノロジーコンバージェンスの時代

(2017年5月30日 22:58)

コンバージェンスという言葉を10年ぶりくらいに聞いた。当時は、デジタル技術によって通信や放送、出版などいろいろなメディアが一つに収れんすることをデジタルコンバージェンスと呼んでいたように思う。NIWeek 2017で(図1)は、基調講演で壇上に立った経営陣の中でTechnology Convergenceという言葉を使った人が数人いた。ここでのコンバージェンスは、最近のITのメガトレンドである、クラウド、IoTAI5G、自動運転技術などが一つの方向に収れんしていくことを示している。

DSCN4952.JPGDSCN4964.JPG

 

1 NIWeek 2017初日の基調講演前と基調講演

 

IoTはもはや単独ではビジネスにならないことははっきりした。必ずデータ解析やそのツール、アプリケーションソフトベンダー、センサ企業、組み込みシステム企業、クラウドプラットフォーム企業などさまざまな企業と組まなければやっていけないからだ。クラウドにIoTセンサからのデータを上げ、AIなどを使ってデータを解析し、5Gセルラー通信で1ms以下のレイテンシでリアルタイム動作をする。これが可能になると、工場の工業機器や医療機器だけではなく、クルマの自動運転にも使える技術になる。全てつながってくる。こう考えるとテクノロジーコンバージェンスと言ってもかまわない。

 

最近のメガトレンドは、それぞれが単独で別々の方向を向いている訳ではない。IoTAIもクラウドも密接に関係し、さらには5G時代にはクルマとも絡む。つまり、それぞれが絡み合って発展していくだろう。

  ただし、実際はそう簡単ではない。AIのように学習と推論を行うようなコンピュータは、データ解析すると一口で言っても、どのようなデータをどのようなアルゴリズムを使い、いかに高速で読み込ませられるか、がカギとなる。IoT端末ではモノの振動を加速度センサで検出するとしても、センサのどのような電気的波形を振動と判定し、それが定常的なのか不連続なのか、不連続だとしても異常を見極めるしきい値はいくつなのか、定量的な数値を求めなくてはならない。それもXYZ軸のそれぞれ直線的な加速度だけではない。時には回転による加速度(ジャイロ)も必要になる。さらにその時の温度や湿度、磁気、圧力、それらの時間変化など、IoT側はデータをひたすらとって、どのようなデータが有用なデータなのか、顧客の望むデータとの相関を求めなければならない。

  つまりデータそのものを直接取るべきセンサ端末、すなわちIoT端末と必要不可欠なデータの種類と数を求める必要がある。さらにデータ処理する側は、欲しい種類のデータが判明しても、それらは顧客が求める要求スペックに必要な演算の程度が重いのか軽いのか、データの種類は適切なのか、などを加味して、エッジコンピュータで処理すべきか、クラウドで処理すべきかを判断しなければならない。IoTシステムとAIを導入したからといって、当分は地道なデータをとりまくる覚悟が必要になる。

  また、ある程度使えるコツが見えてきたとしても、応答が1ミリ秒以下のリアルタイムで処理できるのかどうかも、主な基準の一つとなる。5Gシステムは、1ms以下のレイテンシを要求しているからだ。

  クルマの自動運転やADAS(先進ドライバー支援システム)に応用する場合でも、まずはクルマの近く、前方も後方も周囲も、クルマか人か、自転車か、それぞれがどの程度の速度で近づいているのかを演算し、判定しなければならない。それによって次の動作、すなわちハンドルを右か左に切るのか、ブレーキをかけるのか、判断しなければならない。これらの判断がクラウドを使っても1ミリ秒以下でできるなら、クルマ用のコンピュータ、すなわちECUの設計が大きく変わる。演算豊富な命令ではなく制御命令の豊富なマイコンで十分だということになるかもしれない。

  こういったIoTや組み込みシステムでは、さまざまなテクノロジーが適用される。一つの画期的なテクノロジーを開発することは重要だが、さまざまなテクノロジーを組み合わせて、独自の製品なりシステムを生み出すことも重要である。かつて、iPhoneが登場した時、日本のエンジニアの多くが、新しい技術は何もない携帯電話だ、と酷評したことがある。確かに一つの画期的なテクノロジーはないが、いろいろなセンサや複数指タッチスクリーンなどのテクノロジーを組み合わせることで、画期的なモバイルコンピュータの発明と位置付けられるようになった。ユーザーエクスペリエンスという言葉も生まれた。

  時代がテクノロジーコンバージェンスに向かっているのなら、これまでのビジネスや企業活動、あるいは教育を含めた大学や、社会構造を最初から見直し、時代に合うように変えていくべきではないだろうか。

2017/05/30

   

世界130の論文中、1位になった日本の核融合

(2017年5月26日 12:31)

日本の科学技術力が低下していると言われている。論文の引用数を中心にした指標で各国を調べる文部科学省によると、確かに1998年の2位から2008年には中国にも抜かれ5位に落ちている(参考資料1)。そのような中、ソフトウエアベースのプラットフォーム方式の測定器を創業以来、製造し続けてきたナショナルインスツルメンツ(National Instruments)社が主催するNIWeekにおいて、うれしい「科学の事件」が起きた。インパクトのある技術を表彰する、NI Engineering Impact Awardsにおいて、日本の核融合科学研究所の助教である神尾修治氏が最高の賞である、「Engineering Grand Challenges Award」を受賞した(図1)。

Fig11.jpg

 

1 NIWeek最高の賞を受賞した核融合科学研究所の助教、神尾修治氏(右から2番目) 左端が新たにCEOに就任したAlex Davern氏、左から2番目がドクターTこと、創業者で取締役会長のJames Truchard氏、右端はVPDave Wilson氏 写真協力:日本ナショナルインスツルメンツ

 

NI Engineering Impact Awardsには、地元の米国は言うまでもなく韓国、英国、トルコ、日本、オーストラリア、中国、ベルギーから16件の研究がノミネートされ、その16件の研究が米国時間523日夜、発表された。ノミネートされた16件は、ドレスコードが求められるフォーマルディナーの後、表彰された。ノミネートされた研究は16件だが、応募は130件の研究論文が32ヵ国から集まった。これは、NIの製品であるLabVIEWCompactRIOPXIeなどを使いこなしたことで表彰されるという宣伝めいたものでは決してない。純粋に研究の質が高かったから受賞した。

  神尾氏は、核融合のプラズマ温度2 keV(約2300万度)という高温で、1×1019/m3の核融合密度を最大48分間、維持したという功績を持つ。これまでは、数1000万度という高温のプラズマをミリ秒の単位で閉じ込めることができた程度だった。閉じ込めるだけなら、5時間という記録はあるが、半導体製造に使われるプラズマの温度のように低いもののようだ。

  今回の表彰対象となった2300万度と、1立方メートル当たり1019乗のプラズマ密度の実現には、今後のエネルギー問題が背景にある。化石燃料はどのように甘く見積もってもせいぜい500~1000年後には枯渇してしまう。もちろんソーラーや風力発電という再生可能エネルギーも有望な一つだが、変動が大きく、変動を抑えられる技術を開発しない限り主流にはなりえない。だから、核融合エネルギーは有望と言われる所以である。

  ところが実現はまだ難しく、今回の受賞は道半ばの1里塚にすぎない。核融合は、投入するエネルギーよりも出力されるエネルギーの方が大きくならない限り、減衰してしまうため、エネルギーという形では取り出せない。神尾氏によると、まだ入力の方が大きく、自律的に動くというレベルに達していない。自律的に出力を取り出せるようになるためには、プラズマ温度は現在の5倍に当たる10keV、プラズマ密度を10倍の1020乗に上げる必要があるという。

  その臨界を超えるためには、高い温度を長時間保つように、装置を大型にせざるを得ない。このため装置コストが膨大になり、大学だけでは実現は不可能で、いくつかの大学が共同で作業し、それでも足りない分を7ヵ国で実現しようという国際的なコラボレーションを組むようになっている。目標は2025年の稼働だという。

  プラズマ状態を実現することは、それほど難しくはない。半導体製造ではプラズマを利用したエッチングや化学・物理堆積に量産で使われているからだ。東京エレクトロンやアプライドマテリアルズなどが得意とする装置だ。プラズマは真空に引き、分解したいガスを流したところにマイクロ波パワーを注入し、原子を無理やり高周波で右に左に揺さぶることでイオンと、中性子、ラジカルなどに分離する技術だ。核融合では、プラズマになった状態で1~2MWというハイパワーの別の電磁波を注入しさらに活性化させ、パワーの電圧は30~40kVにもなるという。このため絶縁を確保し、さらに電磁波(マイクロ波)を発し加熱に最適なアンテナ装置を設計し、必要なプラズマ密度を安定に閉じ込める必要がある。

  国際熱核融合実験炉ITER(イーター)では1周35メートルという巨大なチャンバ設備が必要であり、その巨大な設備ゆえに、万が一の時には福島の二の舞になるのではないかというデマが飛んでいるので、正しい理解が必要だろう。核融合はトリチウム(三重水素)と重水素を壊してプラズマを作る訳で、基本的には水素を使うため燃料不足の問題はない。さらに、今のやり方では中性子、つまり放射能が出るため遮蔽は必要だが、原子力とは違い、連鎖反応はしない。このため、温度がどんどん上がってメルトダウン、ということはない。むしろ電源が地震で止まると、プラズマが消えてしまうため、反応は止まってしまう。原子力よりは安全な方向ではある。

  ただし、実験では中性子が出ることで、測定器に使われているメモリやプロセッサのレジスタなどがソフトエラーを起こし、誤動作してしまうという問題がある。このためにSOISOSなどバルクCMOSではない特殊な半導体が必要になろう。またメモリにはECC(誤り訂正回路)も必要になり、ソフトエラーに強い半導体が求められる。

  文科省の予算は科学に対して減らす方向に向いているようだが、夢のエネルギーは実現に向けて着実に進んでいる。予算削減はむしろ、これまで築いてきた遺産(レガシー)を破壊する行為にも等しくなる。資源のない日本にとって何を優先するか、プライオリティをきちんと考えてつけていくことが求められるようになろう。

                                                                                                                        (2017/05/26)

参考資料

1.    解説 論文成果に見る我が国の状況、文部科学省

 

   

スマホの次はスマホ、半導体の次も半導体

(2017年5月16日 23:33)

新聞からはもはや、ポストスマホという言葉が消えてしまった。パソコン、スマートフォンの次の製品を求めようとしても、これほど爆発的な数量が売れたハイテク商品はほとんど他には見当たらないからだ。ハイテク製品がこれまでの20~30%から一桁成長になったからといって、成長が止まる訳ではないし、飽和したわけでもない。

 

Fig1CHiplog.png

1 世界半導体産業の伸びは1995年を境に2ケタ成長から1ケタへ 出典:WSTS(世界半導体市場統計)の数値を津田建二が加工

 

 例えば、図1は世界の半導体売上額を片対数グラフで表したものだ。この図は、1970年代から半導体産業が1995~6年ごろまで平均年率20%で成長してきたことを表している。四半世紀の間中、平均20%という驚異的な成長を遂げてきた。もちろんこれだけでも驚く成長だが、その後、現在に至るまで、ざっと直線を引くと平均年率は5~6%に低下する。だから、半導体産業はもう飽和している、と言われた。

  しかしこれは、片対数というハイパーリニア(直線よりももっと増加する曲線)からリニアに移行したことを知らない発言だ。図2を見てほしい。片対数ではなく、直線グラフで表すと、ここ20年くらいの半導体産業は直線的に伸び続けていることがわかる。つまり、片対数で表さなければならないほどハイパーリニア(2次曲線のようなグラフ)から直線グラフに変わってきたのである。だからと言って飽和している訳ではない。

 

Fig1Chipsales.png

2 世界半導体産業は毎年平均直線的に伸びていく 出典:WSTS(世界半導体市場統計)の数値を津田建二が加工

 

 半導体産業は、景気のサイクルの影響を受けやすい。簡単に量産しやすい性質の製造業だからである。特に、量産効果がいまだにモノを言うメモリビジネス(DRAMNANDフラッシュのようなビジネス)は、供給過剰と供給不足が景気の波と共にやってくる。いわゆる良い時もあれば悪い時もある。しかしその波は、図2からわかるように必ず増加する傾向にある。つまり、山・谷を繰り返しながら成長していく産業である。

  特に今年(2017年)は世界半導体売上額が10%を超えるという予想が複数の市場予測会社から出ており、山のサイクルに当たる。2016年と比べると2017年の半導体売上額は10%以上成長する。

  なぜ半導体産業はこれからも成長するのか。ムーアの法則は終わりつつある、と言われるから、もう飽和し成長が止まると思われがちだが、もっと冷静になって考えてみるがいい。ムーアの法則とは、市場に出ているシリコンチップ1個の上に集積されるトランジスタの数が年率2倍(最近は18~24カ月ごとに2倍)で増加する、という社会経済的原理にすぎない。電子回路はいろいろな機能を実現するために特にデジタル回路では多数のトランジスタを使うが、トランジスタを小さくすればするほど、性能は上がり消費電力は下がるため、良いことづくめだった。このため微細化してトランジスタ数を上げることが進化してきた。

  今や最小寸法は10nmのチップが市場に出始めており、次には最小寸法7nm、さらに5nmへと微細化が進む。しかし、結晶を構成するシリコン原子の直径が数分の一nm(オングストローム単位)だから微細化は原理的に限界に近づいてくる。半導体トランジスタは、そのシリコン結晶の中に3価のボロンや5価のヒ素といった原子(ドーパントと呼ぶ)をシリコン結晶に添加することで電子や正孔を湧き出させる小さな装置(デバイス)なので、さらなる微細化を続けると、二つの電極(ドレイン、ソースと呼ぶ)間に含まれるドーパントの数が十個程度しかなくなる。こうなると、トランジスタによってはドーパントの数が9個か10個かでしきい電圧が10%もバラついてしまうことになる。だから限界に近付いているという訳だ。

  半導体は、シリコンという小さな薄い結晶上に回路を構成したものだから、考えを変えて平面上ではなく立体的に形成すると考えると、小さな半導体パッケージの中に含まれるトランジスタの数にはまだ限界が来ない、とも言える。つまり例えば数cm角のパッケージ内に集積するトランジスタの数は24~36カ月ごとに倍増すると、ムーアの法則を再定義すれば、トランジスタをもっともっと数多く集積してコンピュータの性能を上げようと考えてもよい。

  実際、インテルの最新のXeonプロセッサは50~60億トランジスタを集積しており、エヌビデアの最新のグラフィックスプロセッサは200億トランジスタも集積している。立体的にチップを積み上げれば、その10倍増やすことは可能だ。さらにPoP(パッケージオンパッケージ)あるいは2.5次元的な集積化でもよい。システムの集積度を上げれば上げるほど、システムの性能は上がりエネルギーは下がり、システムコストも下がり、小型になるという方向に限界が見られない。

  AI(人工知能)は専門的な仕事を行わせるのに向いたテクノロジーだが、AGI(汎用人工知能)を用いると、専門しかできないAIから、何でもできるAIへ進化する。人間の頭脳に含まれる神経細胞(ニューロン)1000億個と言われているが、現在1000万個のニューロコンピュータはIBMが試作している。ニューロンを1000億個持つAGIコンピュータが実現するのは2045年ごろだと期待して、それをシンギュラリティ(特異点)と呼んでいる。つまり、少なくともそれまで発展の余地はまだあるということだ。

  こう考えると、成長率をパーセントで表すことはもはや適切ではなくなる。数の差で表すことで成長を実感する。昨年より数百億ドル(数兆円)増えた、減った、という評価だ。実は同じことがスマホにも言える。スマホは少し前までは50%成長、20%成長と2ケタ成長が当たり前になったものの今や1ケタ成長になった。だから成長が止まる、と考えるのは早計。パーセントで複利的に成長するのではなく、差でリニアに成長するのである(3)。新製品スマホの世界出荷台数は昨年が約14億台。今年は5%成長だとしても7000万台の新規需要が生まれるのである。これはやはり成長である。

 

Fig3Smatrtphoneshipment.png

3 スマホはまだ成長する 出典:IDC

 

 半導体もスマホもグロスが巨大になったために、従来の等比級数から等差級数へ成長が変化したと考えると現実を把握できる。スマホは今後5年くらいは年間5000万台、6000万台の規模が新規に追加されて成長していく。だからスマホの次はスマホなのである。スマホはどこでもいつでもだれでも世界中のデータをアクセスでき、しかもディスプレイとキーボードを備えた片手に持てるデバイスだから、そう簡単には代えられない。

                                                                        (2017/05/16

   

アップルがGPU、PMICの半導体も自前で開発へ

(2017年5月 7日 21:50)

アップルは、これまで英国のIPベンダー、イマジネーションテクノロジーズ社が開発してきたモバイル向けグラフィックス回路のIPPowerVRシリーズ)を使ってきたが、今後独自で開発していく。さらに電源用のICとも言うべきパワーマネジメントICPMIC)も従来のダイアローグセミコンダクター製チップをやめ、独自に開発する方針だ。アップルのiPhone2016年に年間23000万台以上、出荷してきており、ICの数量も極めて大きい。アップルという顧客を失うとサプライヤーは大打撃となる。サプライヤーも対処する。

  アップルが半導体開発を意外だとみる向きがあるかもしれない。しかし、アップルはiPhoneそしてiPadのアプリケーションプロセッサ(APUCPUにグラフィックスやメモリ、周辺回路などを集積したシステムLSI)を2010年ごろから自主開発してきた。特に、iPad用のAPUを開発するためイントリンジティ(Intrinsity)社を2010年に買収した。CPUコアそのものはARMCortexシリーズを用いている。ARMは実はCortex-R4の開発時にイントリンジティ社と提携し、同社の持つドミノロジックと呼ばれる回路技術をCPUコアに採り入れた。ドミノロジックはトランジスタ数の少ない回路でCPUを実現するための革新的な回路だった。これによりARMはモバイル用のCPU2GHz以上のクロックで正常に回路を動かすことができるようになった。そのイントリンジティ社をアップルが買収したのである。当然、アップルのAPUにもイントリンジティ社のドミノロジックを採用しているとみるべきだろう。

  アップルはこうしてモバイル用の強力なAPUを開発してきた。ただし、そのAPUに搭載するグラフィックス回路(GPU)はイマジネーションテクノロジーズからライセンス購入していた。イマジネーションのGPUAMDやエヌビデアのGPUとの最大の違いは消費電力が2ケタ(1/100)程度小さいことだ。このためモバイル用という低消費電力化が絶対のAPUに集積できた。モバイル用途では消費電力が多ければバッテリがすぐに減ってしまうからだ。

  アップルとサプライヤーとの関係で言えば、アップルはサプライヤーに対して、彼らの部品やIPをアップルに納めていることを公言することを許さなかった。もちろん、分解して中身を見ればおおよそのサプライヤーを知ることができるが、サプライヤー側からアップルに納入していることは言えなかった。

  今回、イマジネーションは、アップルとの契約打ち切りをプレスリリース上で発表したのは、ロンドン証券取引所に上場しているイマジネーションにとって株価が大きく左右されそうな事実が起きた場合には、公言することが求められていたからだ。これに対して、アップルは立場上何も言っていない。

  そして、イマジネーションがアップルから契約打ち切りを伝えられた時、イマジネーションの株価は一時下がったが、もう少し事実をはっきりさせておこう。アップルはGPUを独自開発することを決め、2年以内にイマジネーションのGPUを使わなくなることを宣言した。そうすると2年後にはイマジネーションの売り上げが大きく落ちるとみられがちだが、そうではない。同社PowerVR Multimedia製品&技術マーケティング担当シニアディレクタのクリス・ロングスタッフ氏(図1)によると、現在、イマジネーションの売り上げの半分がアップルに依存しているが、同社の売り上げが半減する訳ではない。

 

DSCN4811.JPG

1 同イマジネーションテクノロジーズ社PowerVR Multimedia製品&技術マーケティング担当シニアディレクタのクリス・ロングスタッフ氏

 

 なぜか。ロングスタッフ氏は、「IRビジネスはライセンス料とロイヤルティ料からなっており、ライセンス料は新規採用の時点で支払われますが、ロイヤルティ料は量産してから生産量に応じて支払われます。新規に開発する場合にはライセンス料は失われますが、ロイヤルティ料はそれを使ったチップの生産が続く限り支払われます」と筆者に述べている。つまり、2年後には新規ライセンス料は失われるが、ロイヤルティ料はiPhone 7 / 7 Plusまでの従来モデルが生産されている限り、ロイヤリティ料は発生する。もちろん、次第にロイヤルティ料は減少していくが、急にゼロになる訳ではない。

  イマジネーションはそのGPUコアPowerVRの開発をさらに進めてゆくロードマップを描き、アップル離れに対応していく。ハイエンドのシリーズ7XT、コスト効率の良いミッドレンジのシリーズ8XE、超低消費電力のウエアラブル用途のシリーズ5XEに加え、新開発のシリーズ8XE Plus、さらに今後はアーキテクチャを全面的に見直し全面的に性能を上げ、7nmという最先端プロセスにも対応できるFurian(フーリアン)アーキテクチャを採用したシリーズ8XTへと発展させていく。このFurianアーキテクチャもミッドレンジ、ローエンドへと展開していく。さらに光の陰影をうまく採り入れ写真か絵か見分けがつかないほどのグラフィックスを低消費電力で実現するレイトレーシング技術も製品ファミリに追加した。加えて、エヌビデアがGPUをマシンラーニングやディープラーニングに応用しているように、画像認識のCNN(畳み込みニューラルネットワーク)用の演算にも対応する。

  イマジネーションは、これまでの特許や知的財産権に抵触せずにモバイル用のGPUを製作することは至難の業だとみている。一方で、アップルだからできるのではないかとみる向きもある。

  PMIC開発のダイアローグはコメントを発表していないが、ダイアローグはiPhone 6の充電用の四角く白い2.5cm角程度の小型電源の心臓部となるPMICを開発してきた。ダイアローグは明言していないが、アップルの電源には同社のPMICが入っている。PMICはまた、充電器だけではなく、iPhoneiPadなどのデバイス内部にも入っており、デバイスを動かすための基本となる電源をも供給する。

  スマホやタブレットなどのモバイルデバイスは、電圧3.8~4.1Vのリチウムイオン電池1本で動作する。しかし、APU1.2Vあるいは0.9Vで動作し、液晶ディスプレイは3.1V3.7V2.5V2.2Vなどさまざまな電圧で動作する。CMOSイメージセンサでも2V13V15V9V-2.2Vなどさまざまな電圧が必要になる。3.8Vのリチウムイオン電圧でこれらの電源電圧を作り出さなければならない。だからPMICが必要となる。しかもモバイル用は消費電力を下げること、APUの性能を満たすこと、などの要求がある。

  インテルのプロセッサを見ても、PMICとセットにした使い方があり、FPGAでもPMICとセットにした回路技術が使われることが多い。性能と消費電力を共に満足させるために、安定した電源電圧が求められる。バッテリが満充電の4.1Vから3.5V程度に下がってもこれらのICには電圧が変わらない安定さが求められる。

  PMICのアナログIC技術をこれからアップルは開発していく自信があるのだろう。もちろんダイアローグも低消費電力のPMIC開発の知財を持っている。アップルは優秀な人材確保に向け、動いているとみられており、すでに80名のPMIC開発エンジニアを新規採用したといううわさもある。

                                  (2017/05/06

   

半導体には真の経営者が必要

(2017年4月19日 19:01)

 東芝の半導体メモリ会社への出資者を巡って揺れているが、数年前はルネサスが倒産危機にあった。だからと言って半導体が斜陽産業ではない。このことを知っているかどうかは将来に産業を左右する、とても重要なことである。将来社会のインフラと言うべき、人工知能(AI)や、IoT(モノのインターネット)、自動運転車、次世代携帯電話通信5G、さらには2045年に期待されているシンギュラリティ(AIによる人工ニューロンが人間の頭脳のニューロン1000億個に匹敵する数が形成されると期待されるブレークスルー)は、半導体チップなしでは実現できない。

  半導体チップはコンピュータやラジオ、テレビから大量に使われてきた。さらに携帯電話やスマートフォン、タブレットなどへと広がってきた。光る半導体であるLEDやレーザーも浸透した。安いフォトダイオード半導体であるソーラーやスマホに大量に入っている加速度や回転検出や磁力、温度などのセンサ半導体、カメラの眼になるイメージセンサ半導体も至るところに浸透している。さまざまな形でさまざまな機能を持ち、ハードウエアだけではなくソフトウエアまでも焼き付けられるようになった半導体は、この先さまざまなアイデアが出てきてもそれを半導体チップというメディアに焼き付けることができる。半導体チップはもはや社会のインフラになったといえそうだ。

  ところが、日本だけが半導体産業・半導体テクノロジーを正確にとらえていないようだ。AIや自動運転車、IoT5Gと言った今のメガトレンドをにらみ、半導体チップの開発を真っ先に進めているのがグーグルであり、アップルであり、IBMであり、アマゾンである。サービス産業の世界トップを行く企業こそが半導体の重要性を理解している。世界中のさまざまなハイテク企業の人たちにインタビューしても半導体チップの話をしない先端企業はない。

  彼らの認識は、自前の半導体チップで差別化を図ることが今後必須であり、これが成長し生き残る方程式なのだ。様々な業界トップの国内経営者のうち、半導体の重要性を認識している企業トップはどのくらいいるだろうか。数年前、多くの電機メーカーは半導体を切り捨て、これで赤字部門が消えた、と思ったのに、時が経つと半導体以外のコアと考えていた民生部門がだめだったことに、やっとこの頃気がついたようだ。これでは世界の先端企業と比べ何周も遅れているとの批判を受けるのはもっともである。

  ただし、半導体産業は設計と製造が分離した、ファブレス(設計)とファウンドリ(製造)に分かれているのが世界の常識。メモリだけは未だに設計と製造は分離していない。旧態依然とした大量生産のビジネスモデルだからである。東芝が四日市に巨大な工場を持つのはこの大量生産品を作っているからだ。NANDフラッシュと呼ばれるメモリを作っている東芝は、経営がひどいために、儲け頭のメモリ部門を売って東芝の赤字を補てんしよう、という状態なのだ。半導体は利益を生み出す事業部門だからこそ、売られるのである。まるで、マッチ売りの少女が最後のマッチに火をつけて最後の暖をとった物語に似ている。東芝が倒産宣言ともいうべき、会社更生法の適用を申請するという選択肢もあるが、なぜその手を使わないのだろうか。

  国内の電機経営のひどさはシャープの例でもわかるように、社長が業績不振の責任とっても会社を辞めずに会長に「出世」するような人事を行ってきた。これでは会社は良くならないのは誰が見てもわかるはず。社員のモチベーションが明らかに下がるからだ。他の大手電機の場合でも社長経験者は、相談役なり顧問なり会社に残って経営陣ににらみを効かすことが多い。社員が社長室をノックして社長に何かを提案しても、相談役の意見も聞いてごらん、と言われると誰が社長なのかわからなくなってしまう。ここでもやる気すなわちモチベーションがぐっと下がる。

  本体のまずさをわからずに半導体事業を処分してきた電機大手の経営者は、世界的には半導体が活性化していることを理解できないため、これから先の成長できる独自のエンジンを手に入れることができない。というのは独自性を持たせることのできるエンジンは、半導体かソフトウエアしかないからだ。それもソフトウエアでは高性能なエンジンになりえないことがわかれば半導体チップに焼いてハード化するしかない。すなわち差別化できる独自のエンジンは、半導体チップでしか実現できないのだ。だからグーグルやアップル、アマゾンなどのサービス業者が独自のチップを持ち始めた。

  IBMは半導体量産工場を売却したが、量産工場は差別化できるエンジンではないことを知っていたからだ。製品を量産したければ製造専門請負のファウンドリに依頼すればよい。自分で製造工場を持たなくても済むようになった。だからIBMは半導体の開発をやめない。技術競争力が弱ることを知っているからだ。AI用のニューロチップを開発し、シンギュラリティを目指す。今よりもけた違いに多くのニューロンを持つ半導体チップを開発する手を緩めない。これを開発していけば、シンギュラリティに到達する以前にAI用の高性能・超低消費電力のチップが手に入れられ、AI競争・IoT競争を制することができる。

  技術経営が叫ばれて10年近くにもなるが、半導体などのハイテク企業は技術の理解も事業の判断も素早く的確でなければならない。技術の流れを自ら理解していれば、会社をどの方向へ導くべきなのか自然とわかるのだが、残念ながら日本にはこれがわかる経営者は極めて少ない。それも現場に行かないからますますわからない。「社長室なんか要らない」と述べていた経営者(図1)の記事を昨年書いたが(参考資料1)、自分の眼で技術の流れ、メガトレンドを把握したいことが、その理由であった。

DSCN1305.JPG

図1 社長室より社員との話を優先するLabVIEWで有名なNIの社長、ドクターT

社長室に閉じこもり、ノックしてくる社員だけの意見や話を聞いていれば、誰でも「裸の王様」になってしまう。社長には、社員とその家族、出資してくれた株主、製品を使ってくれるユーザーがいれば、彼らを守り会社を持続させる責任がある。だからほかの人よりも高い報酬を得ることができる。責任とれないなら高い報酬を返納すべきであろう。

 

 

参考資料

1.    社長室なんか要らない (2016/05/06

 

   

東芝NANDフラッシュを買う企業

(2017年4月16日 22:33)

東芝メモリに日本勢が誰も応札しなかったが、その理由について先日「東京新聞」から電話インタビューを受けた。国内の半導体企業の理由は二つ。一つは、毎年数100億円規模の投資に耐えられないこと、もう一つは東芝のNANDフラッシュ事業を使って自社の製品ポートフォリオやビジネス戦略から相乗効果が得られないことだ。自分はインタビューする方だが、インタビューされることもしばしばある。少し説明を加えたい。

tokyoshimbun1.JPG


1
 東京新聞による電話インタビュー

 

日本の半導体メーカーは、世界でも極めて特殊だ。1970年代から1990年代にかけてずっとDRAMを生産してきた。しかも1984年のプラザ合意で円高が世界で容認された翌85年には日本のNECが世界の半導体企業の売り上げトップになり、日立製作所や東芝、三菱電機、富士通などと共に日本の半導体企業はトップテンランキングの常連となった。1990年代はじめまで日本の天下が続いた。日本企業の世界シェアは50%を超えた年もあった。1992年にインテル社にトップを譲っても2NEC3位東芝、4位モトローラ、5位日立、6TI7位富士通、8位三菱電機、9位フィリップス、10位松下電器、と日本勢はまだ強かった。しかし、1位を譲ってからは後退していく一方であった。

このため、国内では官庁と親会社を中心にみんな一緒に微細化技術を開発しよう、と経済産業省主導のさまざまなコンソーシアムを設立したが、全て失敗に終わった。日本の半導体産業は世界シェアを落とす一方で、以来一度も日本の半導体産業が浮上した年はなかった。最大の理由は、東京新聞で報じられたように、失敗したのに全てのプロジェクトを成功、と評価したからだ。このことは本音が聞ける会で複数の関係者が証言している。エンジニアなら、顧客からのクレームや、半導体チップに何か不具合が見つかると、徹底的に分析し、故障原因を突き止め、二度と不良品を出さないように対策を講じてきた。霞が関がプロジェクトを失敗と評価したなら、なぜ、どのようにして失敗に至ったのか、を研究し、対策を打てたはずだ。しかし、成功と評価したために分析せず、ひたすら失敗を繰り返してきたのである。

1980年代中ごろから1990年代にかけて日本に席巻された米国企業はどうやって回復させてきたか。何度もいろいろなところで書いてきたが、みんなでまとまって何とかしよう、というような考えはなかった。唯一、セマテックという組織を作り連邦政府の資金を投入したが、結局失敗に終わり連邦政府は手を引いた。むしろ、米国半導体企業11社が真剣に自社の強み・弱み・世界的なトレンド・脅威などを検討し、自社の道を自分で切り開いてきた。

米国企業の中で、真っ先にそのことに気が付き実行してきた企業がインテルである。1984年ごろからDRAMは日本勢が強く、しかもメモリ容量をもっともっと上げていくだけのコモディティ製品になった以上、インテルのやるべき製品ではない、と割り切った。当時、同社のCEOであった、故ロバート・ノイス氏が来日し記者会見を開き、「DRAMはマイクロプロセッサと共に当社が発明した製品だが、DRAMはもはやコモディティになったから、我々はDRAM製品から手を引く」と述べた。それ以来、インテルはマイクロプロセッサに特化し、コンピュータの世界を支配するようになり、1992年に世界のトップにのし上がった。それ以来、ずっと2017年の今でもトップを行く。

インテルだけではない。TIもナショナルセミコンダクタ(今はTI)も、サイプレスもIBMも、どのようにして半導体事業を立て直したのかをインタビューした企業は全て、自社の歩むべき道を自分で見つけたからと答えている。

また、DRAMという製品は世の中でもまずないほど、マーケティングの努力の要らない製品だ。つまり顧客に次の製品は何が欲しいのか、を聞かなくてもよかった。4倍の容量を作ればよいからだ。当時のDRAMメモリは容量が少なくてどうしようもないほどだった。今なら1チップで512Mバイトのものがあるが、日本メーカーが全盛の64Kビットや256Kビット製品はわずか8Kバイト、32Kバイトしかなかった。だからひたすら大容量化を進んだ。

今でも日本の半導体メーカーの中には、次の主力の市場を探す努力が足りないところが多い。一方で、DRAMのように巨額の設備投資が必要な分野にはいきたくない、というトラウマがある。よく「羹(あつもの)に懲りてなますを吹く」といわれるが、DRAMで懲りたからメモリはやりたくないという気持ちが強く、巨額の投資を行う体力も経営力もない。東芝のNANDフラッシュの買収でも全く同様で、東芝以外の企業は巨額の投資に踏み切れないからNANDフラッシュはやらない。

しかも大半の半導体メーカーはDRAMがなぜ失敗したのかをきちんと分析せず、安易にシステムLSIに飛びついたが、システムLSIの本質を経営者が理解していなかった。システムLSIとは、ハードウエアだけではなくソフトウエアも組み込んだチップのことだ。ここで力を入れるべきは、ソフト開発の「人」と、「アーキテクチャ」の設計者である。にもかかわらず、DRAM同様の設備投資に明け暮れ、半導体メーカーの多くは体力を失った。

NANDフラッシュというメモリもDRAMと同様、巨額の設備投資が必要な製品である。DRAMにはトラウマ、システムLSIは模索、といった状態の半導体メーカーが多かったが、産業再編によって、自社の強みを生かして企業を伸ばす経営者がようやく今現れてきたところである。もはや半導体メーカーでさえも、みんなで「仲良しクラブ」を作ろうと考えるところはもうなくなっている。

半導体各社は、例えばルネサスは、クルマとIoT、アナログチップに的を絞り、中堅の新日本無線はパワーマネジメントやMEMSマイク、SAW(表面弾性波フィルタ)など成長分野だけに特化し、回復してきた。ソニーもCMOSイメージセンサとその周辺ICに特化している。今の日本企業でメモリを手掛けているところは東芝しかなくなった。東芝のNANDフラッシュ工場がもし無料だとしても欲しくない、というのが国内半導体だろう。

ではどこへ売るか。一つはファンドや銀行系だ。もう一つはNANDフラッシュの顧客、ないしは関連する企業になろう。鴻海精密が東芝に興味を示すのは、それを購入する顧客だからである。鴻海は、東芝から購入したNANDフラッシュをiPhoneに組み込み、アップルへ納入している。ただし、極めてクセの強い経営者だけに「お坊ちゃま企業」の東芝では対応が難しいだろう。新聞ではソフトバンクの孫正義CEOと鴻海がビジネス上で関係するから、という捉え方だが、それだけで2兆円は出資できない。

もちろん海外のメモリメーカーに買ってもらうという手はあるが、今のところSKハイニックスが手を挙げているようだ。しかしSKハイニクスはかつてエルピーダの買収の時にも手を挙げて、広島の工場をさんざん見て研究し尽くしたあと、手を下したという「前科」がある。東芝にも同じことをする可能性は高い。あるいはサムスンという可能性もあるが、東芝の四日市工場を折半して使っているウェスタンデジタルが許さない。

国内メーカーならあとは、日立やNEC、富士通などストレージサーバーを手掛けている企業だろう。ただ、2兆円全ては出資しない。100億円程度の小口の出資の可能性は十分ある。NANDフラッシュ製品の安定供給を期待できるからだ。東芝は、NANDフラッシュの次の製品としてPCRAMMRAMという次世代の不揮発性メモリを開発しているが、これらを期待する国内外のコンピュータメーカーやクルマメーカーは出資先(出資額はせいぜい数%~10%どまり)の選択肢に入る。

東芝は2次応札を考えているという報道もあるが、決断を長く伸ばすことではない。また自らも資金調達に動くべきであり、待っていてはシャープ同様、評価額を下げられるようになる。東芝はあくまでも入札にこだわっているという声も聞くが、もしこれが事実なら、東芝もシャープのようになるだろう。自ら動くことが問われているのである。

2017/04/16

   

成長路線に乗ったルネサスDevCon

(2017年4月13日 20:02)

「一度、地獄を見たものは強い」。ルネサスエレクトロニクスの開発者会議であるDevCon(図1)を見た感想だ。半導体チップは言うまでもなくITがけん引する。特にITの今の4大トレンドである、AI(人工知能)、IoT(インターネットにつながる全てのハード)、クラウド、5G(第5世代のセルラー通信)を意識した発表が中心であり、世界の半導体産業と同じベクトルを向いている。狙う市場はもちろん海外が主戦場となる。クルマの新規獲得した2016年度(最初の9ヵ月のみ)の受注金額の70%が海外だという。

 

DSCN4377.JPG

1 ルネサスが先日開催したDevCon 基調講演開演直前の会場は満員

 

 これまでクルマのエレクトロニクスでは自動運転やADAS(先端ドライバ支援システム)では欠かせない自動認識、それに使うAI(人工知能)技術は常識になった。これをルネサスは一般工業用途にも持ってくる。それを組み込みAIとしてe-AIと呼んだ。e-AIはあらゆる組み込みシステム、つまりIoTシステムで工業用途での自動機や産業ロボットを学習させ、賢く自律的に判断させるのにAIは欠かせない。

  工業用IoTでは、全てのデータをクラウドへ上げる訳ではない。さほど大きくないデータ量をリアルタイムで処理しなければならない場合には、むしろセンサを備えたIoT端末(エッジ)が置かれたローカルで処理することが多い。もちろん、5G時代が到来すれば、クラウドでさえ、低いレイテンシ(時間遅れ)を実現できるが、今使うにはやはりローカルな処理が求められる。この処理こそ、e-AIが能力を発揮する。

  IoTシステムの中でデータ解析をするツールとしてAIは今や常識になってきた。工業用IoTデバイスをプラント内の配管や装置の近くに設置し、IoTからのデータを集めそれをAIで解析することで機械の予防保全に利用したり、機械のスループットを上げたりする。生産性を上げればIndustry 4.0となり、機械のデータをARなどデジタルで見られればデジタルツインになる。もはやIoTAIはセットになってきたともいえそうだ。

  ルネサスが意図するe-AIでは、学習はクラウドで行い、推論をエッジで行う。ルネサスはインテルとは違い、演算リッチのハイエンドプロセッサを持っていない。ハイエンドマイコンやSoCは得意であり、これらは現場(エッジ)で使うのに向いている。だからこそ、ルネサスの得意な半導体チップを推論用に使い、高度の演算が必要な学習はクラウドで対応する。クラウド上で使ったCaffeTensorflowソフトウエア言語で書いた学習データをマイコンに焼き付けられるように変換するツールとその検証ツールを用意している。さらに、別のところから学習させたデータも取り込めるようにインポートツールも用意した。

  日本の半導体企業の中でAIチップを開発しているところはまだ少なく、インテルやエヌビディア、IBMなどAIを積極的に進めている半導体企業とは違っていた。今回、ルネサスは世界の勝ち組と同様のメガトレンドをうまくとらえており、AIでの成長を見込んでいる。しかもルネサスならではのAIへのアプローチを採った。

FigReneNewOrders.png

 

2 クルマ分野の新規商談金額の推移 すぐに売り上げに反映されないが4~5年後には間違いなく売り上げは増加しそうだ 出典:ルネサスエレクトロニクス

 

 また、クルマ用のマイコンR-Car RH850の商談は順調に伸びており、2016年度はまだ9カ月目の段階で2015年度の新規商談の金額を超え、6500億円を突破した(図2)。今や絶好調と言えるレベルにまで上がってきた。クルマ用半導体は開発完了してから実際のクルマに搭載されるまで5年かかるため売り上げに反映されるにはまだ時間はかかるが、ルネサスの未来は明るくなった。

  かつてルネサスは、リーマンショック後の売上の落ち込み・大幅赤字と、自己資本比率が10%を切る寸前まで落ち込んだ。まさに地獄だった。経営陣の刷新を図り、以来、再建の道を歩んできた。四半期ベースでは10数期連続営業黒字が続いている。

  かつて地獄を見たルネサスは、着々と回復するどころか、成長路線に飛び乗った。社員の顔色も良い。DevConで話を聞いたルネサスの社員たちは、自分の仕事を積極的に説明してくれた。とても全てを紹介できないが、SiCよりもコストが1ケタ低いシリコンのIGBTパワートランジスタを使いながら、電力効率を高め弁当箱大のインバータを実現したり、わずか5mm角程度のICパッケージに入ったパワーMOSトランジスタで30A3相モータを駆動したりする展示もあった。喜々として説明してくれる態度からはルネサスの未来が見えた。

  日立製作所、NEC、三菱電機という親会社からほぼ完全に独立し、自らの責任で自らの道を歩むルネサスに変わった。産業革新機構というファンドの援助があり、外部から経営の専門家が会社を率いたやり方こそ、グローバル企業のやり方でもある。半導体に限らず、日本のIT/電機企業の手本になる日も近い。さて、「優秀なお坊ちゃん企業」東芝はどうするつもりなのか。

                             (2017/04/13